TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

FAA-RD-75-163.1

4. Title and Subtitle

SOFTWARE FOR AN EXPERIMENTAL AIR-GROUND DATA LINK
Volume I: Functional Description and Flow Charts

5. Report Date

October 1975

6. Performing Organization Code

7. Auythorls)
C.J. Goodrow and E. Rachlis

8. Performing Organization Report No

DOT-TSC-FAA-75~-21.1

9. Performing Orgenization Name and Address

Input Output Computer Services, Incorporated*

689 Concord Avenue
Cambridge MA 02138

10. Work Unit No.
FA536/R6130

11. Contract or Grant No.

DOT-TSC-887-1

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

Final Report

U.S. Department of Transportation August 1974 - July 1975

Federal Aviation Administration

Systems Research and Development Service 14. Sponsoring Agency Code

Washington DC 20591

15, Supplementary Notes

*Under contract to:

U.S. Department of Transportation
Transportation Systems Center
Kendall Square

Cambridge MA 02142

16. Abstract

This report documents the complete software system developed for the
Experimental Data Link System which was implemented for flight test during the
Air-Ground Data Link Development Program (FAA-TSC Project Number FA-13).

The software development is presented in three volumes as follows:

Volume I: - ~ Functional Description and Flowcharts
Volume II: - - System Operation Manual
Volume III: - - Program Listings.

The material contained in Volume I describes the design and implementation
of the system software. It is intended to be used as a complementary document to

Volumes ITI and IIT.

17. Key Words

VHF Air-Ground Data Link
ATC Data Link

18, Distribution Statement

DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

19. Security Classif. (of this . :par) 20, Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified

Unclassified 278

Form DOT F 1700.7 (e-s9)

PREFACE

The effort reported in this contract represents a portion
of the Link Characteristics Phase of the Air-Ground Data

Link Development Program (FAA-TSC Project Number FA-13).

The work performed included the design, programming, instal-
lation, check-out, and maintenance of a dual-minicomouter
controlled, air-ground data link, communication system, flight
tested at the National Aviation Facilities Experimental Center
(N.A.F.E.C.). In conjunction with the airborne station and
g-ound station operational systems, a set of two data reduction
and analysis programs were also designed, programmed, implemented
and utilized at N.A.F.E.C. The post-experiment analysis programs

are intended as an adjunct to system performance evaluation.

0

|

Table of Contents

I
System Objective/Function...... S ne id Riaed i sl
il I
System Overview/DesSCription.....iveeeeensennnnnes 3
IIE.
Dialogue Initialization............. oleinie wiels wiEE mids 8
Flowcharts., . vensecoss O T I T — 31
Iv.
Ground Station Communications Supervisor...... +.65
GEUBR . i s eod o ala swie Wme ey Faie walls siate ale e osuains bw 66
FlowchartsS...eeeeeenann o dae elErE BEEISATSE BTE 73
GSUPRA. . v veevsss GlelE HaE Sie Sa s piee e Eiww e eCe e 87
Flowcharts......eenees. Siaials Wl Wie e o e a0 90
B4 335 simims moeie sinse wisvess wime wie WmE R B SR SR 98
Flowcharts....ooveueun.. SianE Rl e . 106
DLES=DIDS v « ois scas asnses o v S e AR R S T Nk
V.
Airborne Station Communications Supervisor..... 122
BOHPR . ».win simiminimioie sinie siwin siaisis sisis sie. e s PN e SN T 123
FlowchartS....ceuveeuans e 127
RASUPRA os svwdlaeas aa's SEA W e v e aie s sielee seie s L3
AU.vueun. wa e BT S Siini SrECHTe) o W aEse BHETES venie s 138
ABF-ABD...... swE e el weiE e S B R vy oiee B miwieiene 141

VI.

System Interrupt and I/O Level......ceeeeennnn ..149
Flowcharts.....ceeeeececsnes Cheancevsoaeaseen 160
VII.

Data Reduction and Analysis........ RN e e . 181
FlowChartS.eeeeseeesoenoosonsnosssenssansans 187

Graphical AnalysiS.....cececnevecaness T T - 209
FlowchartS..ceoeeereaoncoosonsnns 5 WGl ATy e 216

Appendices A-J

vi

I. SYSTEM OBJECTIVE/FUNCTION

The experimental data-link system provides a test bed facility
for enabling a ground station/air station communication 1link
to be utilized in determining the link management requirements

for the data-link in an air traffic control environment.

The entire software scheme incorporates an on-line communication
system and off-line, post-experiment data-reduction system to

facilitate data-link performance evaluation.

The on-line software is designed such that the ground station
controls the communication cycle and the air station responds
in a slave-like manner at a data rate of either 2400 or 4800 bits

per second.

The ground station operates as a single-channel, simolex (half-
duplex) communication controller. Based upon parametric inputs
received during the dialogue initialization phase, the ground
station transmits a properly formatted message, and awaits a
response. The response (or lack of response) is evaluated with
respect to technical acknowledgement (ACK/NAK), block check
sequence (BCS) error(s), message format validity, and identifier
validity. The transmitted messages are stored on a cassette tape
and read into a core memory pad for on-line access. The message

selection sequence is a function of the initial dialogue responses.

In order to evaluate data-link performance characteristics, the
on-going performance occurrances are maintained in memory in a

statistics buffer, and a cassette record is maintained

-]1-

for each transaction (message round-trip). The ground and
air stations record each transaction (and its peculiarities)
as they occur. The statistics, which are maintained in
memory at both stations, are scrolled onto the cassette when
a test sequence is completed. These statistics reflect such
system performance criteria as the number of message transac-
tions, number of non-responses, number of BCS errors, number
of non-acknowledgments, number of bits sent (for echo-type
messages), number of bits in error (for echo-type messages),
number of characters sent, number of acknowledgments. These.
criteria are classified as to echo and non-echo and further

classified as to message text length.

IT. SYSTEM OVERVIEW/DESCRIPTION

The ground station data-link software system operates on three
levels. Functionally, there is an initialization level which
operates in a communications-inactive, dialogue (computer
requests/operator responds) environment. There is a communica-
tions environment in which an ongoing communications scheme is
maintained. There is also a third (transparent) level, input-
output processing and interrupt recognition/handling, which is
maintained transparently to the current function (initialization
or communication). The air station data-link software system
hasn't any dialogue-type initialization; it does, however, have
an ongoing communications environment and the input-output and

interrupt recognition/handling processing.

The ground station configuration consists of the following equipment:

a) A Texas Instruments TI-960A minicomputer with
16,384 sixteen bit words of memory and interval-
timer (real-time clock).

b) Two Texas Instruments Silent-700 ASR-733 electronic
data terminals consisting of a keyboard, printer,
and twin cassette units, and computer interface.

c) A McDonnell-Douglas, MDL-510, 2400/4800 bit-per-
second minimum shift keying modulator-demodulator
(modem) , and computer interface.

d) V.H.F. receive and transmit antennae (type CA-1781,
swastika).

e) A V.H.F. transmitter (ITT, GRI-21).

f) A V.H.F. receiver (ITT, GRR-23)

{(Note: The receiver, transmitter, and antenna are not connected

with the minicomputer, except as incidental through the modem) .

The air station configuration consists of the following equipment:

a) Same as ground station.
b) Same as ground station.
c) Same as ground station.
d) An aircraft Blade antenna (type 37R-2U, VHF/UHF).

e) A three-channel analog-to-digital converter, with
computer interface.

f) A V.H.F. transceiver (in accordance with ARINC
Characteristic 566A).
The ground station software is comprised of fifteen separate
software modules; all of which are linked together such that the
system appears as one load module. The modules are functionally
inter- and intra-dependent. The selection of module division is
one of software design and programming consideration and not

necessarily functional consideration. Full advantage was taken

of the Texas Instruments assembler, linker, and loader in the

construction of the data-link system.

In broad generalities, the following statements may be made about

the fifteen modules of the ground station:

Module Function
DATALP-DATALF-DATALD Dialog initialization
GSUPR Communication supervisor

Module Function

GSUPRA Communications supervisor
GU Comm. supervisor utilities
DLFS-DLDS Comm. supervisor data-base

SIH Input-output/Interrupt
handling

STIHA L
SIHD-DSB N
STHK u
SIHO A
INS L
SDRP a
SDRP n
SDRF-SDRD "

SIHI L

The air station software is comprised of fourteen separate
software modules. The following table is designed to be similar

to the table shown for the ground station software.

Module Function

ASUPR See GSUPR

ASUPRA See GSUPRA

AU " GU

ABF-ABD " DLFS-DLDS

SIH See ground station table
STHA 1

SIHD-DSB o

SIHK n

STHB f

Module Function

STHO See ground station table
INS "

SDRP N

SDRF-SDRD "

STHI "

The data reduction and analysis program is comprised of
fourteen separate software modules. In broad generalities

the modules have the following functions:
Module Function

MATIN

UTIL-MTR-GREC-AREC

PRINRE

FIN

SIH See ground station table
SIHA e
STHD-DSB N
STHK i
SIHB "
STHO "
INS "
SDRP "
SDRF-SDRF "

SIHI "

It is not the purpose of this document to describe the
engineering design and operation of the equipment utilized,
nor to describe the utility software utilized for data-link
system preparation. It will be stated that the editor used
to create and alter source files is TSE-960. The assembler
used is either SAL-960 or SALM. The linker used is LRL-960
and the loader used is Texas Instruments bootstrap, relocating
loader. The editor, linker, and assemblers are supplied by
Texas Instruments and run in the environment of T.I.'s
programming support monitor (PSM) or process automation
monitor (PAM). It should be noted that the object which

results from assembling under SAL-960 is indistinguishable

from the object which results from assembling under SALM.

IIT. DIALOGUE INITIALIZATION

This secticn describes the function and operation of the ground
station operator/computer dialogue and ground station

initialization.

After the ground station software is loaded, the system automati-

cally begins a sequence of questions. As each question is asked,

the current value is given. The operator must respond to the

question.

Some keys are for special functions.

a)

b)

c)

d)

e)

The

CARRIAGE RETURN (CR) Depress 'CR' key to terminate

response to a gquestion.

RUBOUT = Use the "RUBOUT' key to delete
one character to the left each
time RUBOUT is depressed.

CONTROL/G - Force the program to go back to
the beginning of the dialogue.

CONTROL/U - This allows the user to force the
same question to be asked again.

CONTROL/E = This key is to terminate entry of
the free form dialogue.

program does the following:

Set base registers (Reg. 4, 5, 6, 7).
Call 'INITIO' routine to initiate I/O interrupt.
Print the self-announcement message.

1) Print the 'HOUR: MINUTE: SECOND = ', followed by the current
time-of-day.

2) Set flag 'FTIME' to show time given.
Wait for action.

1) To terminate this question (i.e. no change), simply depress
'CR' key.

2) To change the value as seen, enter the desired value with
'CR'.

Check
1) If
2) If

3) a.

all input characters.
it is a 'CR', go 'CRLOOP' routine.
it is a 'RUBOUT', go 'RUBLOO' routine.

If it is not a special character, check for 'RUBOUT'
flag (FRUB) first. If it is set, or no more character
for 'RUBOUT', print the back slash or ' \' then show
the character. 1If it is not set, or no 'RUBOUT' at
all, show the character directly, then go to step (b).

Store the character, clear the 'RUBOUT' flag, set

'INPUT' flag (FIN) then keep accepting characters until
a 'CR' or special key is depressed.

-10-

CARRIAGE RETURN (CRLOOP)

This routine checks to see what step should be executed next
and branches to appropriate place.

1’

Check the 'RUBOUT' flag for 'RUBOUT' processing. If it
is set, print the back slash '\' and reset the 'RUBOUT'
flag. Then go to 2.

If it is not set, go to 2.

Check the 'FREE FORM' flag (FPS);

If this CR is in free form dialogue, store CR-LF for re-
cording, then reset the counter to continue to accept the
input.

If it is not set, go to 3.

Check 'INPUT' flag (FIN) for any changes. If it is not
set, go to 'STEP'. If it is set, something is to be
changed; go to 4.

Check 'TIME' flag (FTIME) to see if the changes are for
the time-of-day.
If it is not set, go to 5.
If it is set, time is being changed (TIMECH).
Routine 'TIMECH' does the following:
1. Sets the position counter properly.
2. Checks the input string for:
a) 8 characters exactly.
If not, goes to '"ERRMEG' routine.
b) Number represented (CHKNUM).
3. Checks to see 'HOUR' in range (00-23), 'MINUTE' in
range (00-59), 'SECOND' in range (00-59).
4. Checks to see that two colons are in the right places.
5. Stores new time in ASCII with space (HHH).
6. Resets '"INPUT' flag.
7. Goes to '"STEP' routine.

Check 'BIT RATE' flag to see if the changes are in the

transmission rate.

If it is not set, go to 6.

If it is set, go 'BAUDCH' routine.

This routine does the following:

1) Sets the position counter right.

2) Checks input characters:
a) 4 characters exactly, or to to 'ERRMEG' routine.
b) Number represented. (CHKNUM).

3) Changes to binary (MASK12)

4) Gets number of thousands, hundreds, tens, ones (KITHTO).

5) Converts to hexadecimal expression (TOHEXA).

6) If the number is 4800, , set flag BAUD12 = 1.
If the number is 240010, set flag BAUD12 = 0.
Otherwise, goes to 'EﬁgMEG' routine.

7) Stores new bit rate in ASCII (for recording).
Clears 'INPUT' flag (III).

-11-

9)

Check the appropriate flag to see if the changes are

'KNR' (the number of non-responses).

If it is not set, go to 7.

If it is set, go to 'NREPCH' routine.

This routine does the following:

1) a) Arranges input characters.
b) Converts to hexadecimal expression (TOHEXA).
c) Checks acceptable limits (1 To 1099) -

2) Stores new number of non-responses, resets fINPUT'
flag (III).

3) Goes to '"STEP'.

Check the appropriate flag to see if the changes are
'KNAKS' (the number of NAKs allowed).
If it is not set, go to 8.
If it is set, go to 'NAKCH' routine.
This routine does the following:
1) a) Arranges input characters.
b) Converts to hexadecimal expression (TOHEXA).
c¢) Checks limits (1-104q).
2. a) Resets ‘INPUT' flag.
b) Stores new number of NAKs.
3. Goes to 'STEP'.

Check the appropriate flag to see if the changes are
'KBCSF' (the number of BCS errors allowed).
If it is not set, go to S.
If it is set, go to '"BCSCH' routine.
This routine does the following:
1) a) Arranges input characters.
b) Converts to hexadecimal expression (TOHEXA).
c) Checks limits (1-101gq).
2) a) Resets 'INPUT' flag.
b) Stores new number of BCS errors.
3) Goes to 'STEP'.

Check the appropriate flag to see if the changes are
'"KNPK' (the number of allowable prekeys).
If it is not set, go to 10.
If it is set, go to '"NPKCH' routine.
This routine does the following:
1) Adjusts the position counter properly.
2) Checks input characters.

a) 3 input characters.

If more, goes to 'ERRMEG' routine.

b) Number represented (CHKNUM).

3) Changes to binary (MASK12).

to

to

to

to

4) Finds number of thousands, hundreds, tens, ones from

input characters (KITHTO).
5) Converts to hexadecimal expression (TOHEXa).
6) Checks limits (1 to 15010).
7) Stores new number of prekeys (III).
Resets 'INPUT' flag.
8) Goes to 'STEP'.

-12~

10.

11.

Check the appropriate flag to see if the changes to the
number of message repeats (KMSGR).
If it is not set, go to 11.
If it is set, go to 'MSGRCH' routine.
This routine does the following:
1) Sets the position counter properly.
2) Checks input characters.

a) 5 input characters.

If more, goes to 'ERRMEG'.
b) Number represented (CHKNUM).
c) Change to binary.

d) If there are 5 input characters exactly, check the

1st character.
If it is 1, check the other 4 characters to see
whether they are all zero.

If they are all zeroes, new number is 27104¢, save

it and clear input flag, then go to next step.
If one of them is not zero, go to 'ERRMEG'.

If the first character is 0, ignore this chafacter__

and treat as 4 input characters.

3) Finds number of thousands, hundreds, tens, ones from

input characters (KITHTO).
4) Converts to hexadecimal expression (TOHEXA).
5) Checks limits (1 to 100004() .
6) Stores new number of message repeats (III).
7) Goes to 'STEP'.

Check the appropriate flag to see the changes are to the

scenario messages desired.
If it is not set, go back to the beginning.
If it is set, go to routine 'SCENCH',
This routine does the following:
1) Sets the position counter properly.
2) Checks input characters:
a) 2 characters
If more, 'ERRMEG' is entered.
b) Number represented (CHKNUM).
c) Changes to binary (MASK12).
3) Converts to hexadecimal expression (TOHEXA).
4) Checks limits (1 To 164,) .
5) Checks first scenario %gag.
If it is set, stores this new value for the first
scenario, temporarily.
Resets first scenario flag and goes to 'STEP'.

If it is not set, this new value is for number of the

last scenario.

Compares it with number of first scenario.
If it is less, number goes to 'ERRMEG'.

If not, stores new value of first and last scenario.
Clears the last scenario flag, then goes to 'STEP'.

-13-

'CHANGE' SUBROUTINE

This subroutine is used to arrange the input characters for
changing the number of non-responses, the number of NAKs, or
the number BCS errors.

It does as following:

1) Sets the position counter properly.
2) Checks input characters

a. 2 input characters, exactly.
If more, ERROR

b. Number represented (CHKNUM).

3) Finds the thousands, hundreds, tens, ones from these
modified input characters (KITHTO).

4) Converts to hexadecimal expression (TOHEXA).
5) Checks limits.

6) Returns to main program.

-14-

'MSGPRT' SUBROUTINE

This subroutine is used to print the message, character by

character, using 'PRINTC' subroutine.

It does as following:
1) Gets a word (two character).

If the word is a -1, the end of message is lmplled
therefore, to return to main program.

a. Right justify the first character.

b. Mask to get the left character,

¢. Print the left character (PRINTC).
2) Gets the word again.

a. Masks out the left character to get the right
character.

b. Prints the right character (PRINTC).
3) Increase pointer by one.

4) Go to 1.

~15-

SUBROUTINE 'CHKNUM'

This subroutine is used to check all input characters and to

see if all acceptable numbers are in range.

It does the following:

1)
.2)

3)
4)

Gets the character.

Tests to see of it is in range:

a. X'30" to X'39' (0-9)

b. X'41' to X'46' (A-F)

If it is in range, save the data, otherwise go to 'ERRMEG'.
Goes to 1 until all characters are checked.

Returns to main program after all characters are tested.

-16-

'BUFFST' SUBROUTINE

This subroutine is used to save the fixed data for recording

purposes,

The format is five locations per parameter, and a

space to separate the data (except first 8 locations for stor-

ing time-of-day).

It
1)
2)
3)
4)
5)
6)
7)
8)
9)

does the following:

Sets up the pointer.

Stores ASCII

Loads and stores

Loads
Loads
Loads

Loads

and
and
and

and

stores

stores

stores

stores

l30l

first (zeroes).
thousands.
hundreds.

tens.
ones.

space.

Initializes values for next step.

Returns to main program.

-17-

- "PRINTQ' SUBROUTINE

This subroutine is used to print a character using the

'"PRINTC' routine, and then momentarily delaying.

It does the following:

1) Sets return address.

2) Sets delay factor.

3) Prints the character by using 'PRINTC'.

4) Returns to main program.

=B

TMASK12' SUBROUTINE

This subroutine is used to change ASCII character to binary;

it is used right after the 'CHKNUM' subroutine.

It does the following:

1)
2)

3)
4)

Gets the character.

Compares it with X'40' (one more than 9).

If it is greater than X'40', it must be from the set A-F.
Subtracts X'37' from that ASCII character. Otherwise,
subtracts X'30' from it.

Saves the binary character.

Returns to main program after looping.

o 1

'ELOOP' ROUTINE

This routine is used to terminate the free form data, when
the CONTROL/E is accepted. This special character is for

free form data only.

1) Checks flag 'FPS' when the control/E is recognized.

If it is not set, ERROR.

If it is set, shows CR-LF and saves the position counter.
2) Resets 'FPS' flag.

3) Goes to "STEP'.

-20-

'ULOOP' ROUTINE

This routine is used to erase the question and to re-ask

the same question (for the convenience of the operator).

It handles the following:

1)
2)

3)

4)
5)

6)

Set the position counter properly.

If the table pointer is -1, re-start by showing
time-of-day again.

Otherwise, decrease the table pointer by one.
If'FPS' is set, adjust the position counter first.
Otherwise go to 4.

Initializes some values for calculation.

Resets two flags:

a. 'RUBOUT' flag (FRUB)

b. '"INPUT' flag (FIN);.

Goes to 'STEP'.

-21~-

'GLOOP' ROUTINE

This routine is used to handle the special character

'CONTROL/G'.
It does the following:

1) Initializes some values for calculation.

2) Restarts the dialogue from the beginning (time-of-day).

-22-

'STEP' ROUTINE
This routine is used to set up the proper table pointer
and branch to the appropriate place.
It does the following:

1) 1Increases the table pointer by one.
2) Picks up the branch address via table look up and

transfers control.

23

'ERRMEG' ROUTINE

This routine is used to show a question mark '?' when an

ERROR is made.

It does the following:

1) Prints the question mark (?).

2) Re-asks the same question.

—-24-

'MSGNAK' ROUTINE

This routine is used to show the number of NAKS.

It handles the following:

1)

2)

3)

4)

5)

6)

Prints the question.

Shows the value of KNAKS (the previous response).
Saves the value of KNAKS for recording.

Clears flag 'FNR'.

Sets flag 'FNAK' to indicate program position.

Waits for action (key-in).

-25-

'RUBLOO' ROUTINE

This routine is used to handle the character which has

been erased, when the 'RUBOUT' key is depressed.

It does the following:

1)

2)

3)
4)

Checks the 'RUBOUT' flag.

If it is not set, it means this is the first "RUBOUT'.

A back-slash is issued and flag 'FRUB' is set,

Checks the counter to see if any input characters remain:
If none, clear the 'RUBOUT' flag, and go to 'ERRMEG'
routine.

If there is, decrement the position counter by one.

Shows the deleted character.

Waits for action (key-in).

=26=

'MSGNRE' ROUTINE

This routine is used to show the number of non-responses.

It handles the following:

1)
2)
3)
4)
5)
6)

Prints the question.

Shows the current value of KNR (the previous response).
Saves the value for recording purposes.

Resets 'BAUD' flag.

Sets flag 'FNR' to show KNR given.

Waits for action (key-in).

-27=

'GAME' ROUTINE

This routine is used to make sure all fixed data and

free-form data exists.

It does the following:

1) Records the entry data on cassette.

2) Assures all data is written.

3) Switches unit 2 to playback.

4) Rewinds both cassettes to load point.

5) Sets flag 'SCEN' for playback.

6) Reads the data acquisition cassette into memory.
7) Clears flag 'SCEN' .

8) Switches unit 1 to playback.

9) Prints the data whic¢h was read.

10) Goes to 'STEP'.

Y

'READS' ROUTINE

This routine is used to handle SCENARIO messages.

T,
There are sixteen messages on the cassette.

This routine does the following:

1)
2)
3)
4)

5)
6)
7)
8)
9)

10)

Initializes the message number and reserved locations.

Sets flag 'SCEN'.

Reads

Finds
to be

Finds

Packs

one SCENARIO message from the cassette.

the total number of characters in this message
stored.

the total number of locations needed,

the data and stores it in 'CSGEN'.

Increases the message number.

Fills

the pointer table.

Goes to (2) (Indexed loop of 16 scenario messages).,

After

a. Checks BAUD12: 1if

looping:

1
0

1, set Reg. 1
0, set Reg. 1

i
non

if

b. Initializes ground station by calling subroutine IGS.

c. Goes to 'GSUPR'.

-29-

'ATOM' SUBROUTINE

This subroutine outputs values with leading zeroes suppression.

'KITHTO' SUBROUTINE

This subroutine justifies a keyed-in value by adjusting for the

number of keyboard strokes. This allows the operator to suppress

leading zeroes.

'TOHEXA' SUBROUTINE

This subroutine is used to covert a given decimal value (represen-

ted in ASCII) to hexadecimal (binary). The process is done by

repetitive addition of thousands, hundreds, tens, and ones by

position.

'THTO' SUBROUTINE

This subroutine converts a binary value to decimal representation

by repetitive subtraction of thousands, hundreds, tens, and ones

by proper position.

-30-

2O

INITIALIZE
ALL PROCES-
SING
REGISTERS

INITIATE I/0

INITIO

N

PRINT THE
TITLE

MSGPRT

6

SHOW TIME
& SAVE

3 (1
LAY

occC

SET POSITION

COUNTER
(NCHL1)

FOR RECORD

)

CLEAR
ALL
FLAGS

ot

(FTIME)
TO SHOW TIME
GIVEN

WAIT FOR
ACTION (INP.

\LJA o FRUN 151

e

!

CARRIAGE \ YES CRLOOP
RETURN
?
NO
(RUBOUT \ YES @
? [~ .
NO
(cou'mo:./q \ YES @
NO
CONTROL/U) YES @
NO
(CONTROL/E \ YES @
LNO
FLAG ON y CLEAR
? RUBOUT
FLAG
NO
PRINT THE
PRINT Q

=32

Y

FORM ? -

\ SAVE CHAR.
IS IT IN FREE/ y FOR RECORD

SAVE ASCII
CHARACTER
TEMPORARILY

SET INPUT
FLAG

-33-

CRLOOP

YES PRINT 'X' CLEAR

RUBOUT 2 e
“\PRINTQ

|

IN FREE FORM | YES
2

NEW INPUT 0
?
YES
OF LAST
YES SCEN. MSG IS NO
NEW TIME SHOWN
? ?
lno YES
LESS THAN %
OF FIRST YES
(NEW gAUD YES \[BAUDCH SCEN. MSG
' ?
lNo ‘LNO
NEW # STORE # OF
OF NON-RESP. YES FIRST SCEN.
? MSG.

Lo

YES
NEW #
OF NAK
?
lNO
NEW # OF YES
BCS ER.
?
NO

-34-

GET FIST
CHAR. FOR
HUNDREDS

LES

GET 2ND
CHAR. FOR
TENS

l

GET 3RD
CHAR.
FOR ONES

GET FIRST GET FIRST
CHAR. FOR CHAR. FOR
THOUSANDS TENS

GET 2ND GET 2ND
CHAR. FOR CHAR. FOR
HUNDREDS ONES

GET 3RD

CHAR. FOR

TENS

GET 4TH

CHAR. FOR

ONES

GET FIRST
CHAR. FOR
ONE

-35-

NEW # OF
PREKEY?

NO

NEW # OF MSG
REPEAT ? YES

NO

NEW SCEN. MSG

?

NO

RESTART

=36=

\ NNN

SHOW
CR-LF

\ CRLF

RESET
COUNTER

ERRMEG

Q)

ERRMEG

ERRMEG

ERRMEG

C mguz' CHAR\ -
YES
NUMERIC
CHARACTERS
2
YES
HOUR: IN \ NO
00-23? /
YES
MINUTE IN \
00-59 ? / NO
YES
SECOND IN \
(00-59 ? _/ NO
YES
) NO

TWO COLONS (:
IN RIGHT PLAC
?

ERRMEG

~_E=

/éAVE NEW
TIME

/’/[.4
=
w

HHH

~37~

DODD

CLEAR INPUT

BAUDCH

SET THE
POSITION
COUNTER
PROPERLY

4 INPUT
CHARACTERS

?
‘L YES

NUMERIC
CHARACTERS

GET POWER
OF TEN

KITHTO

-39~

NEW BAUD = GT NEW BAUD = NO

2400, , 4800, ?
?
YES YES
RESET FLAG SET
BAUD12=0 FLAG
BAUD12=1

l

TORE NEW
AUD IN ASCII

IIT

-40-

7

SET THE
POSITION
COUNTER
PROPERLY

NUMERIC
CHARACTERS ?

YES

CHANGE TO
NON-ASCIL
\ MASK 12

GET POWERS
OF TEN

>

AN

KITHTO

N

TOHEXA

ONE TO
FIFTY

STORE NEW
OF PREKEY

NO

IIT

-4]1-

ADJUST THE
POSITION
COUNTER

INPUT 5 CHAR. | MORE
?

\borr MORE [NO

NUMERIC
CHARACTERS ?2

CHANGE

FIVE DIGITS)&
-5

NO FIRST CHAR. i
A ONE
?
YES
NO OTHER 4
CHAR. ARE 0
T
YES

GET POWERS '\
OF TEN
\\\ KITHTO /)7

CHECK LIMITS
1 TO 10000
?

-42~

STORE NEW #
OF MSG. REP.

I\ 1y

NO

FLAG

ADJUST THE
POSITION
COUNTER
PROPERLY

INPUT 2 CHAR.
?

J,NO

NUMERIC
CHARACTERS ?

™

CHANGE TO
NON-ASCII

MASK 12

GET POWERS
OF TEN

KITHTO

G (1)
D

CONVERT
TO HEXA-

ONE TO
SIX?EEN

YES

~43=

*IRST SCENARI
RESPONSE

STORE

YES

NEW

FIRST SCEN #

FUE

III /

FLAG

RESET FIRST
SCENARIO

COMPARE WITH
FIRST SCEN #
?

GT
EQ

STORE
NEW LAST
SCEN_&

III /

STEP

NAK MSG
PRINT %%%ETMSG

\, MSGPRT / MSGPRT

CONVERT #
OF NAKS TO
DEC & SHOW IT

\. THTO/ATOM

STORE i

\BUFFST ; BUFFST /

SET FLAG SET FLAG
(FNAK) CLEAR (FBCS) CLEAR
FLAG (FNR) FLAG (FNAK)

-45~

RECORD THE
SYS. ENTRY
DATA

RECORD

PLAYBACK

ROM

|2

PRINT THE
DATA FROM
PLAYBACK

PRINT

-46-

RUBLOO

IS RUBOUT YES
FLAG SET
ALREADY ?

PRINT '/’ E
PRINTC /

SET FLAG
(FRUB)

Al

¢

LY

SET
COUNTER
PROPERLY

PRINT
LAST CHAR.

PRINTOQ

-47-

l

INIT. RESULTS

'STO

RE'

GET #
THE AS
INDEXE

OF

R

IS IT
NONE

YES

?

NO

DECREMENT
INDEXER

ADD X
TO ST

'3E8!
ORE

GET #
MDS AS
INDEXE

oF 1

R

A

IS IT N
2

ONE _1\ YES

)

NO
ADD X '64'
TO 'STORE'

I

DECREMENT

INDEXE

R

—-48~-

GET # OF
TENS AS
INDEXER

NONE ?

ADD X 'A'
TO 'STORE’

DECREMENT
INDEXER

-49-

YES

ADD #
OF ONES
TO 'STORE'

SET POSITION
COUNTER
PROPERLY

INPUT 2
CHAR.
2

NUMERIC
CHARACTERS 7

YES

/ CHANGE TO j
NON-ASCII
CHAR.

IR

GET POWERS
OF TEN

\, KITHTO /

CONVERT TO
HEXADECIMAL

\ ToHExa /

IN LIMIT
1 TO X 'A' NO

?
YES

-58-

READS

READ SCEN.

TAPE

__PLAY /

FIND # OF
LOCATIONS
NEEDED FOR
PARKING

PACK THE
DATA FROM
SCEN. TAPE

FILL THE
POINTER
TABLE

SAVE THE
SCENARIO
MsSG.

ALL MSG.
PACKED ?

YES

INIT.
GROUND
STATTION

1GS

-51-

NO

INDEXED LOOCP
OF 15 SCENARIO
MESSAGES

GET THE
CHARACTER
TO BE CHECKED

YES I8 IT IN
RANGE
X'30'X'39" TO

MORE

IS IT IN
RANGE X'41' TO
X'46'

e 3 ¥HS

SAVE THE
CHAR.

INCREASE
POINTER
BY ONE

ALL VALUES
TESTED ?

NO

NO

NO

——

YES

-52-

GET THE
REE DATA MSG
£ PRIN

MSGPRT

l. SET FLAG FPS

2. SAVE POSITION
POINTER FOR REC.
3. INITIATE FREE
DATA COUNTER

RE CR-
* FOR PLYBK)

NNN

-53-

SET POSITION
COUNTER
PROPERLY

STORE ZERO
(OR X'30)
IN 'DLGUE'

x_/

\, AWAY

E .y
AND STORE I

AND STORE IT

_AWAY /

STORE SPACE
(OR X'20) IN
'DLGUE"

INIT. SOM
VALUES

MSGPRT

GET THE
CHAR. OF
MESSAGE

END OF
MESSAGE

SHOW RIGHT
CHAR.

) |
Jo

PRINTC

SHOW LEFT
CHAR.

B[
KN

PRINTC

ﬁ
Q

INCREMENT
POINTER

-55=-

YES

L

GET THE
CHARACTER

3

MORE THAN

X'40"' 2

[\

SUBTRACT
X'30' FROM
I

YES

SUBTRACT
X'37' FROM
IT

INCREMENT
INDEXER

NO ALL DONE
'

YES

—56-

@

DO CR

PRINTC

DO LF

heg
PAN

PRINTC

o

THTO

X'3E8' TO SE

1. GET THE #
2. SUBTRACT
OW MANY 1000

-

s 1. SAVE THE
NONE ? REST
2. INCR # OF
THD
YES
. GET THE #
. SUBTRACT
'64' TO SEE
JOW MANY 100'S
Y
1. SAVE THE
N REST
NONE ? 2. INCR # OF
HDR
VES a—
A\
L,
1. GET THE #
2. SUBTRACT
X'A' TO SEE
HOW MANY 10'd
1. SAVE THE
NO REST
NONE ? 2. INCR # OF
TENS
GET THE
FOR ONES

-57-

T

SET POSITION
COUNTER
PROPERLY

PRINT '?'

PRINTC

GLOOP

POINTER -\
PCs 17 /

YES

DECR. TABLE
POINTER (PC)

L

BY ONE
IN FREE FORM YES FIND THE
NOw ? POSITION OF
STARTING
FREE FORM
L_ NQ

INIT. SOME
VALUES

RESET

-58~

CLEAR TWO
FLAGS: FRUB
FIN

INIT. SOME
VALUES

RESET /

DO CR~-LF \

ki

CRLF

BB

1. STEP
INDEXER

2. SAVE THE
CHAR.,

RINT THE
‘' CHAR.

PRINTC

-59-~

INCREMENT
THE POSITION
COUNTER

SAVE THE
CHAR.

IS IT IN
FTREE FORM 7?

YES

INCR. COUNTER
(FOR EACH
LINE)

1000 CHAR.
IN FREE
FORM ?

NOT YET

Y

RETURN

RRANGE IN-

PUT CHAR. &
CONV TO HXDEC

CHANGE

TORE NEW
OF NRP

IIT

-60-

ARRANGE IN

CHANGE

STORE NEW
OF BCS

N\ IIT /

—GHl~

PRINT NREP
MSG

MSGPRT /

SHOW # OF
NREP
CONV. TO DEC

\ THTO/ATOM /

STORE IT
FOR RECORD

BUFFST

.

A

L

s

T

SET FLAG
(FNR) CLEAR
FLAG (FBAUD)

@

GET THE

BAUD MSG AND
PRINT IT

\, MSGPRT /

FLAG BAUDC
SET ?

GET VALUE
4800, ¢

Nol

GET VALUE

240010

ONV. TO
DEC. AND
SHOW IT

THTO/ATOM

p

BUFFST

(

SET FLAG
(FBAUD) /
CLEAR FLAG
(FTIME)

@

MSGPRT

CONV. TO
DEC. AND

THTO/ATOM

Nawer

BUFFST

SET FLAGS
FSCEN AND
FSNF/CLEAR
FLAG FRPT

-63=-

ET LAST
SCEN. MSG
AND PRINT
MSGPRT

. TO
EC. AND
SHOW IT

\zTo/

J

STORE IT

\, BUFFST

EET FLAGS
F'SCEN AND FSNI
/CLEAR FLAG

FSNF

N

G

KEY MSG

MSGPRT /

CONV. #
OF PREKEY T
EC AND SHOW IT,

N\ THTO/ATogy_

SET FLAG
(FNPK) /

CLEAR FLAG
(FBCS)

\, MSGPRT /

STORE IT
FOR RECORD

BUFFST /

f

SET FLAG
(FRPT) /
CLEAR FLAG
(FNPK)

IV. GROUND STATION COMMUNICATIONS SUPERVISOR

This section describes the function and operation of the

supervisory logic of the ground station.

-65-

A. GSUPR

The main controlling sequence of the communication handler resides
is this module. This module makes the decisions relative to mes-
sage order, message acceptability, and it also continually adjusts

the running statistical values which reflect system performance.

*When the ground station dialogue initialization (DATALP-DATALF-
DATALD) module completes its task, it calls an initialization
subroutine for GSUPR, and then releases control to GSUPR, where

a "header" line is printed on the status terminal.

The first task of GSUPR is to establish communication with the
airborne station. The keyboard is enabled for operator input

(to allow operator inserted messages and/or the "quit" command).

A system entry poll is transmitted continually until an acceptable
response is detected. Each transmission of the system entry poll
has an incremented message identifier (with the alpha character
being an ASCII "blank"). As soon as an acceptable response is'
detected, a completion record is written on the data collection
cassette and a "." is printed on the status (secondary/auxiliary)
terminal. No other recording, nor status printing is done; meaning

that there are no records nor indicators of unsuccessful system

entry polls.

-66-

The next message sent to the aircraft is a time synchroniza-

tion poll. This poll contains, in its text field, the current
value of the ground station's time-of-day clock, and the value

of two ground station parameters: KNPK and KNAKS. The time poll
is transmitted until it is successfully acknowledged. Each sub-
sequent transmission of this poll has an incremented message
identifier and incremented alpha: chéfacter (blank, then A through
%), until one of ENAKS, ENR, or EBCSF is exhausted. If one of the
counters becomes exhausted, the message identifier is incremented,

and the alpha character is resequenced with a "blank".

Oonce the system entry poll and time poll are successfully completed,
the message communication discipline begins. The discipline re-
quires that message transmissions occur in a fixed order, beginning
with the scenario message number identified by SFIRST and continuing,

in increments of one, up to, and including, the scenario message

number identified by SLAST. Each message 1is sent repeatedly, until
the repeat counter is exhausted, before the next one is sent. The
repeat condition is specified by EMSGR. Two types of occurrances
cause the stepping of EMSGR. It is tallied whenever a successful
poll occurs. It ig also tallied whenever one of the error parameters
(EBCSF, ENAKS, and ENR) becomes exhausted. Each transmission con-
tains an incremented message jdentifier. In addition, each stepping
of EMSGR causes the poll to contain a "blank" alpha character. Each

subseguent re-transmission of the same poll, due to some error, has

-67—-

unconditional branch is executed to NS, to advance to the next

scenario message.

If the response checks non-valid, flag BCSE is interrogated. 1If
set, one of five conditions has occurred. There has occurred
either a "pure" BCS error, or the seen message was too long, or
too short, or had an improper aircraft identifier, or there is

a bit compare error (echo type only). Any one of the last four
conditions can happen in conjunction with any of the other five
conditions. Any of the five conditions causes an error record

to be filed and an indicator to be printed on the status terminal.

The priority of check is in the following descending order:

Type Indicator Condition
W W Aircraft I.D.
L L Too Long
S S Too Short
I I Bit Compare
B B "Pure" BCS

The indicator is printed in upper case if an 'ACK' is seen, and in
lower case if a 'NAK' is seen. All of these conditions cause error
records to be recorded, but only one is filed per poll, based upon
the shown high-to-low priority. Either ECHOBC or NEBC is tallied

and GSUPR is prompted to send a 'NAK'. If EBCSF is not now caused
to be exhausted, the message is re-transmitted with an incremented
identifier and stepped alpha. If EBCSF is now exhausted, the same

type of transaction record is filed, and an unconditional branch

-70~-

to NS is executed, to advance to the next scenario message.

If the response is not valid, and if BCSE is not raised, then
the received message contained a 'NAK'. An 'N' type error
record is filed and either ECHONK or NENK is tallied, an 'N' is
printed on the status terminal. If ENAKS is not now caused to
be exhausted, the message is re-transmitted with an incremented
message identifier and a stepped alpha. If ENAKS is now caused
to be exhausted, an 'N' type completion record is filed and NS
is entered unconditionally, to advance to the next scenario

message.

At NS, the keyboard buffer is released, if appropriate (if this
is a response to a keyboard message). If either the timing poll
of general poll flag is raised, GSUPR is recycled. If a scenario
message is to be next, subroutine SMSTEP (GU) is called to step
EMSGR and to move in the next scenario message (if necessary),

and GSUPR is recycled.

Whenever the quit flag is raised, an unconditional branch is
executed to QUITS where a simulated keyboard message is sent

to the aircraft. This message tells the operator of the airborne
station to abort the airborne system operation. The flag to
accept operator is disabled. An unconditional branch to QUIT
(GSUPRA) is executed after acknowledgement of the message ("Q"

on the status terminal) or non-acknowledgement ("U" on status

terminal) fifty times.

-71-

The validity checking logic (VCL) assumes no bit errors will
occur. If any of the length or aircraft identifier errors occur,
the flag BCSE is set. Flag BCSE is set to one by the message
reception logic (MSGREC in module GSUPRA) whenever a received
message contains a BCS error. If BCSE is set to one, then the
messége is not interrogated for a possible printer output. If
BCSE is not set to oﬂe, the message is interrogated for the
characteristics requiring printer output and is printed, if
required. The printing occurs on the secondary (status) terminal,

and is preceded by the time-of-day.

If the message contains transparent text (mode H) all characters
are bit-by~bit compared with the originating text. Bit errors,
if any, are tallied in a double precision counter labeled ECHOBE

and flag BCOME is set to one.

If the message doesn't contain an "ACK", then the originating
message is reloaded with the current time, if it was a time re-
synchronization poll. Flag NAKE is set to one. If an "ACK" is

detected, the general poll flag (GPF) is turned off.
If any bit compare errors occurred, flag BCSE is set to one. If

flag BCSE is set to one the normal subroutine return is executed;

else, the instruction following the normal return is executed.

=F7oL

\GSUPR

WCHAR

SET " IN-COMMU-
NICATION" FLAG
(ICF),

RECORD COMPTE-
TION RECORD

PRINT "." O
SECONDARY
TERMINAL

sga

MOVE CURRENT
TIME TO THE
TIME POLL

SET THE "TIMING
POLL" FLAG (TF)

l' SETCB

SET "KEYBOARD-
IN-PROG" FLAG
(KBDMIP),

SET CURRENT
MESSAGE POINTER
TO CURRENT SCE-

NARTO MES

TMNML

INCREMENT
MESSAGE NUMBER;
SET BLANK
ALPHA CHAR.

GSUPR

-75-

PRINT TRANSMIT
SENTINAL,

-T76-

CLEAR "FORCE
ACKNOWLEDGE"
FLAG (FRN),

CIASSIFICATION,

TALLY CHAR.
COUNT OF
ECHO-TYPE
MESSAGES,

-77=

VALIDITY
CHECKING
LOGIC,

RECORD BCS
ERROR,

PRINT " REASON'
ON SECONDARY
TERMINAL

EXTRACT
MESSAGE
CLASSTFICATION,

TALLY NON-ECHO
BCS COUNTER.

CLEAR "BCS-
ERFOR" FLAG
(BCSE),

TALLY BCS
OCCURANCE

MESSAGE NUMBER/
ALPHA

- - .

RECORD NAK
RECORD

PRINT "N" ON
SECONDARY
TERMINAL~

EXTRACT MESSAGE
CLASSTFICATION.

TALLY ECHO
NAK COUNTER.

TALLY NON-ECHO
NAK COUNTER,

SET "END-
MESSAGE" FLAG
(ERVF),

RECORD NON-
RESPONSE RECORD)

STOP THE
RECETVER

PRINT "R" ON
SECONDARY
TERMINAL,

EXTRACT MESSAGE
CLASSTFICATION,

_BO—

TALLY ECHO NON-
RESPONSE COUNT-
ER.

‘ NSCNO

RECORD
COMPLETTON
RECORD,

PRINT "." ON
SECONDARY
TERMINAL,

EXTRACT MESSAGE
CLASSIFICATION,

ECHO
TATLY ECHO
)
RESPONSE 2 ACKNOWLEDGE
COUNTER,
3 |
TALLY NON-ECHO |
ACKNOWLEDGE |
COUNTER. |
TURN OFF THE
“PTMING POLL" CLEAR THE ”
FIAG (TF), "FORCE, ACKNOW-
IEDGE" FIAG GSUPR
(FAN),

STEP TO THE
NEXT MESSAGE,

81

"A" TYPE ERROR

“L" TYPE ERROR

"S" TYPE ERROR

"I" TYPE ERROR

RIMR

RIMN

v

"R" TYPE ERROR,

.

"N" TYPE ERROR,

v

"B" TYPE ERROR.

-82-

RECORD IN-
COMPLETE

TRANSACTION
REQORD,

QUITS

CLOSE THE KEY- 1

BOARD,

INCREMENT THE
TMNMT MESSAGE, NUMBER;
SET BLANK ALPH
QUITSO

CLEAR THE

"FORCE ACKNOW-

LEDGE" FLAG (FAN)

?

SET "END-MESSA-
GE" FLAG (ERMF),

PRINT "Q" ON
SECONDARY
TERMINAL

STOP THE
RECEIVER .

PRINT "U" ON
SECONDARY
TERMINAL,

INCREMENT
MESSAGE
NUMBER/ALPHA,

DISABLE
INTERRUPTS,

}

TRANSFER TO
WORKER MODE,

DSROFF

DISABLE DATA-
SET RECEIVE
FUNCTTON.

TRANSFER TO
SUPERVISOR

-85-

CHECK FOR ECHO
BIT-COMPARE
ERRORS,

—

CLEAR "BIT-
COMPARE“ ERROR
FLAG (BOOME),

BCS
ERROR ?

ERRD on Mms—

AGE, 100 1LONG/

SHORT; SET "BCS
R" FLAG

IF NO A/C I.D.
OR LENGTH ERR-
ORS, CHECK FOR
SPECIAL HAND-
LING,

SET "BCS-ERROR"
FLAG (BCSE),

(ERROR)

B. GSUPRA

This module is comprised solely of subroutines or functions which

serve the ground supervisor (GSUPR).

Subroutine IGS serves as the initializing link between the
dialogue function and the on-line communication function. It
initializes variables of both operational and statistical nature.
It is a one-shot subroutine, used only once per experiment. Its
function is to insure that statistical information is not biased
by previous experiments, and to set operational parameters, values,

and flags to their proper initial state.

Subroutine SENDM is used as the pass-through for sending a message.
Its purpose is to accept a buffer that is ready for transmission
except for the two BCS characters, and the technical acknowledge-
ment character. Based upon the condition of flag FAN, the technical
acknowledgement character is forced to either "ACK" or "NAK".
Location LSTCC is set with the number of characters in the message
text. The entire buffer is rippled through the BCS calculation,

and the resultant BCS characters are jammed on the end of the
buffer. The transmission flag MD is set to one and the output
subroutine DSOUT is called. As soon as control is returned from

DSOUT, control is released from SENDM.

Subroutine MRI is used to initialize the logic for the message

repection subroutine MSGREC. The reception area is cleared to

-87-

all zeroes, all of the logid flags and switches are reset (set
to zero), the turn-around timer TT is initialized and the turn-

around clock is started.

Subroutine MSGREC is called from the modem interrupt handler.
This is the logic which is used to compile a message in core
memory, as it is received. When the interrupt handler recognizes
a modem interrupt, MSGREC is called at which time it will simply
release control if a message is not expected. This type of logic
is sufficient for the reason that the system is designed and
implemented as a half-duplex communications handler. If modem
interrupts are acceptable, the characters are accepted as forming
a message if, and only if, each of the first six characters is
exactly what it should be. This is a selective filtering technique
which was constructed to improve communications accuracy. Beyond
the first six characters, all characters are accepted and passed
through the BCS calculation until a "natural" termination is
detected. For transparent mode messages, the text terminates
when a counter (initialized by the character following the STX
character) expires. For normal mode messages the message termi-
nates with either an end-of-text (ETX) or an end-of-text-block

(ETB) character.

After the message is completely compiled by the message reception

Iegic (MSGREC), it is checked for all combinations of BCS error,
improper aircraft identifier, and incorrect message length (long

or short), and the correct respective flags are set. All of this

-88--

checking is prompted by the interrupt accompanying the final BCS
character. The final step is to disable the modem receiver and

to set lockout flags for honoring the interrupts from the receiver.

-89 _

PUT ACK OR NAK
IN SEND BUFFER,
BASED ON FAN

SET EFT FLAG,

SET TEXT

LSTCC.

SET UP INDEXER,
BASED ON SEND
BUFFER LENGTH.

FETCH SEND

(STARTING WILTH
MODE) .

INITIALIZE THE
BCS CALCULATION.

ROTATE THRU
BCS CALCULATION.

-90-

CALCULATE TWO
BCSFE BCS CHARACTERS.

SET THE "TRANS-
MISSION" FLAG
(MD) TO ONE.

START TRANSMI-
DECUT S5I0N.

RE-SET BUFFER
SIZE COUNT
(DISCOUNTING
BCS CHARS) .

=91~

SET THE "END-
MESSAGE" FLAG
(ERMF') , TO IGNORE|
THE RECEIVER.
RECORD A
RECORD BLANK RECORD
(END-OF-FILE)
MTTIME MOVE IN THE
TIME.
FORMAT THE STA-
TISTICS INTO AN
OUTPUT BUFFER,
RECORD RECORD
b} STATISTICS.
(RECO) RECORD
D STATISTICS.
y e
y RECORD A

PRINT "SYSTEM
ABORTED."

FLUSH TIHE
PRINT BUFFER

CRINY

SYSHM
OPERATTONAL
FLAGS .

+

CLEAR ALL OF
THE STATISTICS;
BCS VALUES.

v

INITIALIZE
MESSAGE!
NUMBER,

v

SET THE NUMBER
OF NAKS AND
NUMBER OF PRE-
KEYS INTO TIME
216)

SET ALL KEVBOARD
BUFFERS AVATLA-

1

INITIALTZE
SCENARIO
POINTERS AND
FIXED POLL QOUN-
TERS:

-93-

CLEAR THE RE-
CEIVE BUFFER.
SET RECEIVE

10GIC PARAMETERS

v

CLEAR RECEIVE
IOGIC FLAGS.

START THE TIMER
(TURN-AROUND)
GOING.

DSROFF

SET CHARACTER
COUNTER TO FIVE
MILLISECONDS AND
CLOCKING.

3

STOP START-OF-
MESSAGE CLOCK.

MR1

GSUPRA

-94-

ONE
OF ETX/ETB
?

SET "MESSAGE
OVERVLOW" FLAG
(MLFL) .

e

EC

EXPECT TWO BCS CLEAR "STX"

CHARS. FLAG (STXF).
MR4
GSUPRA

.

GSUPRA /

(2

SET “BCS ERROR"
FLAG (BCSE) .

DEROEFF

KILL THE
RECEIVER.

ESTABLISHED
THE TEXT
LENGTH COUNT
WORD,

FLAG (STXF),

STORE FOR
COUNTING
TRANS. TEXT
(CCNT) .

SET UP TO
START BUFFER
FROM THE TOP.

INITIALIZE
BCS LOGIC.

BCSIE

Py

=96~

ROTATE CHAR.
THROUGH BCS
ALGORITHM.

PUT CHAR
IN RECEPTION
AREA,

BUFFER
EXHAUSTED
2

SET "OVER-
FLOW" FLAG
(MLFL),

MESSAGE

SET "TOO Y
TOO SHORT

SHORT" FLAG
(MLFS) .

SET "AIR-
CRAFT I.D."

FLAG (ACAF) .

SET UP FOR
NEXT CHAR,

-97=

C. GU

This module is comprised of utility-type subroutines designed
to enable the ground supervisor to be designed as logically
functional as possible. There are also some subrautines which
are called on the interrupt level. The subroutines are des-

cribed below in the order in which they occur in memory.

RTCIH

Each real-time clock (interval-timer) interrupt this subroutine
is called fezom the system interrupt handler. The software
locations which track the time of data are incremented by one
millisecond. The clock is maintained as a twenty-four hour clock.
There is no date maintained; hence, the clock simply cycles from
23:59:59.999 to midnight (00:00:00.000) with no indication of a
new day. After the time of day has been accounted for, flag TC
is interrogated. If it is a one, the system is timing character
spacing and location CHART ps tallied by minus one. If the clock
has decremented to zero, the flag TCO is set to one, to indicate
that the clock has overflowed. Next, flag TSOM is interrogated.
If it is a one, the system is clocking the delay until a start-
of-message is encountered. Therefore, location SOMTR is decre-
mented. If it has overflowed, flag TSOMO is set to one to show
that the clock has expired. After the two timers are checked

and updated, RTCIH returns control to its caller.

-98-

BCSIE-BCSN-BCSFE

This subroutine has three entry points. BCSIE is called as an
initialization procedure and BCSFE is called as finalization
procedure. The purpose of calculating the two BCS characters

are to lend confidence to the communications. The calculation

of the block check sequence (BCS) characters is performed on both
transmission and reception. The two BCS characters calculated
during the transmission are rotated through the BCS algorithm
during reception. Tf all calculation and transmission and reception
are error—free, the two BCS characters which were sent will, when
rotated through the BCS algorithm, result in two zero characters

at the receiving station.

When an SOH (start-of-header) character is sent/received, entry BCSIE
is called. The net effect is simply to clear the lower sixteen bits

(word) of a thirty-two bit (double-word) value.

Every character following the SOH character causes an entry to BCSN,
where the following takes place. The character is placed in the word
representing the high order of the double-word value. The upper

half of this upper word is cleared. The entire double-word is
logically rotated one position to the right. If the upper word

is now negative (i.e. the sign-bit is a one), the lower word is ex-—
clusive-or'ed with 840816' The double word rotation and resultant
or'ing is performed eight times. After the eighth iteration the

subroutine releases control to the caller.

-99-

As each character causes the algorithm iteration, the completion

of the last character causes the system to request an entry to

BCSFE where the routine causing the rotation and exclusive or'ing is
performed sixteen times. At the completion of the sixteenth iter-
ation, the lower half of the lower-word becomes the first BCS charac-
ter and the upper half of the lower-word becomes the second BCs
character. They become the two BCS characters which are appended
onto every transmission and which should cause the receiving station

to end-up with two zero BCS characters.

GETAB

This subroutine is called from the interrupt level. It is used

to assign a buffer from a core pool of three buffers for use by

the system to assemble a keyed-in message (by the system Ooperator).
The subroutine is not re-entrant; hence, if busy, it simply exits.
If at least one of the three buffer areas is available, the pointer
is passed to the caller. If none is available, a default return

is performed.

GMOoV

This subroutine is called to move a block of words from one section
of memory to another section of memory. The two areas' pointers are
pre-set-up and the count is also pre=set-up. The two areas must
not overlap in the manner that the "receiving" area is within the
number of move-words higher in memory (higher, as toward location

zero-in a direction of smaller addresses) .

-100-

MTIME
This subroutine uses GMOV to move the current time to any specified
nine consecutive memory locations. During subroutine execution, the

clock is instantaneously precluded from interrupting.

MMID
Using subroutine GMOV, this subroutine moves the current message

identifier to any specified five consecutive memory locations.

IMNM-IMNMI

This is a double entry subroutine. Entry IMNMI is used to initialize
a record area with the current time (using MTIME) and to force the
alpha character of a message identifier to a "blank". The subroutine
then continues at entry IMNM, where the alpha character of the
message identifier is incremented in the manner that "blank" goes

to A, A goes to B, B goes to C, . . ., Y goes to 7Z, 7z goes to A,

etc. The numeric value of the identifier is incremented bv one.

The identifier is then moved (using MMID) to a message area which is

specified as a calling parameter.

UM
This subroutine moves the scenario message address block specified
by location CSB from the packed scenario area CSCEN to the unpacked

scenario message area USCEN.

-101-

SMSTEP

This subroutine is called each time the ground station determines
the need to advance to another message. Counter EMSGR is decremented
to determine whether the repeat counter is exhausted. If it is

not, the subroutine merely releases control to the caller. If it

is, the next scenario message is requested and moved using sub-
routine UM, all of thé message parametric controllers are re-

stored to "full" condition, and the subroutine releases control.

RIM-RCM

This double entry subroutine records message transaction records.
If the transaction to be recorded is not a "good" transaction,
entry RIM is used, with the error code in previously set; .else
entry RCM is used. An output memory buffer area is compiled. The
record code is stored, followed by the message identifier (using
subroutine MMID). The current time is put behind the previously
stored start time, using subroutine MTIME. The current "sent"
text character count is encoded and stored. The current mode is
stored. The current scenario message number is encoded and stored,
unless the message originated external to the scenario (system
entry, time poll, keyboard message, or general poll), in which case

a "K" is stored.
The output area is recorded using subroutine RECORD of the I/O

level. The message controlling parameters are re-stored to the

"full" condition, and control is released to the caller.

-102~

EREC

This subroutine is called whenever the ground system supervisor ’
determines that it is required to file an error record. The
conditions causing an error record to be filed are enumerated in
Appendix G and the record formats are displayed in Appendices

A,E, and F. All non-responses to a poll result in the recording
of the originating poll. All other recordings are of the received
poll on non-echo type transactions, or of the text characters not

correctly echoed.

EXCOM

Because of the cassettes being used to accumulate data, there
are some characters which are incapable of being recorded (they
cause the cassette controller to perform undesirable functions).
This subroutine is entered with a character to be recorded. If

the character is within the limits 1016 - C - 1416' 51 is added

16
to the character. This effectively turns the excluded characters
into the set of lower case A through lower case E. If the
character is not in the given set, it is checked for the occur-
rance of a bit-set in the highest position (8th). Since the
cassette cannot record eight bits of information, anyzgharacter
with track eight set to one is changed to TE ¢+ and is, therefore,
recorded as the diacritical mark . If the character is not in
either of the given sets, it is allowed to pass- through EXCOM

unchanged. Only characters which are supposed to be plain text

(non-transparent) are passed through EXCOM.

-103=

MvCcMP

This subroutine is entered with a count of the number of
characters to be moved from one buffer to another buffer by
passing them through EXCOM. Subroutines GET and PUT are also

employed.

GET
This subroutine fetches a character pointed to by pointer GETP.
Tt then advances GETP and increments GETC, which serves as a running

total of "fetched" characters.

PUT

This subroutine stores a character in the location pointed to by
PUTP. It then advances PUTP and increments PUTC, which serves

as a running store counter. This is the complimentary subroutine

to GET.

ECPUT

This subroutine is called for all characters which are to be
encoded. Transparent and binary information are passed through
ECPUT. The eight calling bits are divided into two four-bit

bytes. Each byte is added to 3016 to produce a record-able
character. If the calling character is a minus one (FFFF) the
effect of this subroutine is to produce two 2E16 (period) characters.
This allows successfully echoed characters to be shown as a

double period and the non-successfully echoed characters to be

recorded "as seen" (after encoding).

-104-~

TSUBW

This subroutine is used to compare the text area of a received
message with the text portion of the originating message {echo-mode
messages) . Subroutine FCLASS is called to establish the length
classification of the originating message. Each character of both
texts are sequentially exclusive or'ed with its corresponding
character. A zero result implies a complete bit-by-bit agreement.
A non-zero result causes the accumulation of the one bits in the

or result. This tally is double precision added to the data base
area ECHOBE, which stores the running count of bits in-error. If
there is no bit error in a character position, it is.replaced with
a negative one, which is used as a "no-error" sentinel by subroutine

ECPUT.

FCLASS
For statistical purposes, this subroutine determines the classi-

fication of a message by the following table:

Class One: 0 or 1 text character

Class Two: 2 to 30 text characters, inclusive
Class Three: 31 to 120 text characters, inclusive
Class Four: in excess of 120 text characters

-105-

TIME-OF-DAY BY

=106~

ITERATION

TO -16,

~ —| CURRENT CHAR,
0 LBCSW.

EXCLUSIVE OR
THE LOWER 16
BITS WITH 840816

T

=107=

SET BUSY FLAG,

SET BUFFER
POINTER,
|
t
SET IN USE
INDICATOR N >
CLEAR BUSY
FIAG
AVATIABLE
R

MOVE MESSAGE
I.D. TO DESI-
RED AREA,

-log-

Qv

GMOV

L]
[MOVE CURRENT UPACK SCENARTO
TIME-OF-DAY TO MESSAGE SPECI-
FIED BY "CSB".

— l -

MESSAGE ALPHA PUT IN "USCEN"
TO BLANK g AREA

INCREMENT
MESSAGE ALPHA
(MODUL.O A-17),

MOVE MESSAGE
I.D. TO
DESIRED AREA.

INCREMENT
"REPEAT COUNT-
ER" (EMSGR).

UNPACK & MOVE
IT TO "USCEN"
ARFA,

SET TO FIRST
SCENARTO .
MESSAGE EMSGR, ENAKS,
EBCSF, ENR,
R

-109-

FETCH MESSAGE
CLASSTFICATION,

INCOMPLETTION "C" TO OUTPUT
CODE TO OUT- AREA,
PUT AREA.
MESSAGE I.D. TO
OUTPUT AREA, MMID
CURRENT TIME
TO OUTPUT i
AREA,
FIIE THE OUT-
BUT AREA
RESTORE ENAKS, -
EBCSF, ENR. ;H\\

DIFFERENCE,
REPLACE “COMPA-|., N s
RED" CHARS.
WITH = 1
4
SET "BIT COMPARE
4 ERROR" FLAG
] (BOQME),
R

=110~

FORCE EACH
BYTE TO 2Ejg,

ENCOLE BY ADD-
ING 3015 TO
EACH 4~BIT
SECTION.

PUT IN QUTPUT
BUFFER.

=112

D. DLFS-DLDS

This module contains all of the flags, tables, variables,

constants, and pointers utilized by the ground station.
The classes of locations are defined by: system constant

(K), experiment constant (C), experiment variable (v),

buffer (B), and pointer (P).

-113-

FLAG

ACAF

BAUDC

BCOME

BCSE

EFT

ERMF

ERS

FAN

GETABF

GPF

ICF

STATE

~114-

IMPLICATION

ke ehutldebahad
Aircraft I.D. in received message
is correct.
Aircraft I.D. in received message
is not correct.
System is operating at 2400 baud.
System is operating at 4800 baud.
Echoed response has no bit compare
error(s).
Echoed response has at least one
bit compare error.
Received message has no BCS, length,
or I.D. error.
Received message has at least one of
above errors.
Used as an echo/non-echo switch-

non-echo.
Used as an echo/non-echo switch-echo.

End-of-message not seen (or, accept
modem char.).

End-of-message seen (or, don't accept
modem char.).

Record receive: buffer.

Record send buffer.

Send an 'ACK'.

Send a 'NAK'.

'GETAB' subroutine not busy.

'GETAB' subroutine busy.

General poll not required.

Send a general poll.

System entry poll not acknowledged.

System entry poll acknowledged.

FLAG STATE IMPLICATION

KBDM 0 No keyboard buffer needs attention.
1 A keyboard buffer needs attention.
KBDMIP 0 No keyboard buffer is in transmission.
1 A keyboard buffer is in transmission.
MD 0 Not transmitting.
1 Transmitting.
MLFL 0 Received message not too long.
1 Received message too long.
MLFS 0 Received message not too short.
1 Received message too short.
NAKE 0 'ACK' seen.
i 'ACK' not seen.
QF 0 Continue.
1 Stop.
SOHF 0 This received char. is an 'SOH'.
1 This received char. is not an 'SOH'.
STXF 0 An 'STX' not seen.
1 An 'STX' seen.
TC 0 Do not clock characters.
L Clock characters.

=115~

FLAG

TCO

TF

TSOM

TSOMO

STATE

~ll6-

IMPLICATION

Character clock didn't overflow.

Character clock did overflow.

Timing poll not required.

Timing poll required.

Do not clock start-of-message.
Clock start-of-message.
Start-of-message clock didn't

overflow.
Start-of-message clock did overflow.

LOCATION

BCSCNT

BCSEEN

CB

CCNT

CHART

CKBB

CLASSC

CM

CRTCC

CSB

CSCEN

CTIME

DLGUE

EBCSF

ECHOAK

ECHOBC

ECHOBE

cLass

-.11'7—

USE

Iteration counter for BCS
calculation.

calculated BCS of received
messade.

Points to current transmission
buffer.

Temporary use by MSGREC.
Character timer clock.
Contains the current keyboard

transmission buffer.

Classification code.

Last sent mode.

current received text character
count.

current send buffer pointer.
First word of the 16 packed
gcenarios.

Time of day portion of record
buffer.

Dialogue character input buffer.
Number of BCS error-—this
message.

Number of acknowledgements of
echo messages.

Number of BCS failures of echo
messages.

Number of bit errors.

LOCATION

ECHONK

ECHONR

ECHOTC

ECNT

EMSGR

ENAKS

ENR

ERBUF

GP

KBCSF

KMSGR

KNAKS

KNPK

KNR

LBCSW

LSTCC

MANB

MAN1

-118-

USE
Number of non-acknowledgements
of echo messages.

Number of non-responses of echo
messages.

Total characters sent of echo
messages,

Temporary use by MSGREC.
Countdown of transmission
repeats.

Number of non-acknowledgements--
this message.

Number of non-responses-this
message.

Recording buffer.

General poll.

Keyed-in number of BCS errors.
Keyed-in number of message

repeats.

Keyed-in number of non-acknow-
ledgements.

Keyed-in number of prekeys.
Keyed-in number of non-responses.
BCS calculation variable.

Last sent text character count.
Pointer table to MAN1, MAN2,

MAN3.

Keyboard buffer.

LOCATION CLASS USE

TODHRB vV-B L.S. hours.

TODMNA V-B M.S. minutes.

TODNMB v-B L.S. minutes.

TODMSA . vV-B M.S. milliseconds.
TODMSB V-B Middle milliseconds.
TODMSC - V-B L.S. milliseconds.
TODSCA vV-B M.S. seconds.

TODSCB V-B L.S. seconds.

TT K Message turn-around time.
USCEN ‘ B Unpacked scenario area.

=121~

V. AIRBORNE STATION COMMUNICATIONS SUPERVISOR

This section describes the function and operation of
the supervisory logic of the airborne ‘station.

-122-

A. ASUPR

The airbcrne supervisor module controls the logic sequence of
the in-flight system. There is no dialogue because the airborne
system receives its few externally required parameters from the

ground station as part of the time synchronization poll.

The airborne supervisor begins automatically via a vectored
transfer of the bootstrap loader. The data-base, flag-base, and
procedure-base registers are established, the I/0 level logic is
initialized; the supervisory level is initialized; the system is
set for one hundred fifty prekeys and a printer message is given.
When the operator responds with a carriage-return, .a header is
printed on the secondary terminal, and a flag is set to allow

operator keyboard input.

The main logic is now entered. Subroutine MRI is called in order
to initialize the modem receiving logic. The receiver is con-
stantly monitored for one of three events. If a reception is
started, no character may be spaced in excess of five milliseconds
from the previous one. 1f this time is exceeded, the receiver is
momentarily disabled and the procedure is re-started. If the
quit flag is detected, the shut-down logic is invoked. If neither
of these two events occur, the system waits until the end-of-
reception flag (ERMF) is seen. The received poll is analyzed for
allowable length and aircraft identifier. 1f the identifier is
incorrect and/or the poll is ~longer or shorter than specifica-

tions require, an appropriate sentinel is printed on the secondary

-123-

Printer and the procedure re-cycles.

If the length and identifier are acceptable, its classification
(by length) is determined. If the operator has signaled a key-
board message for the ground station, a flag is set for requesting
& general poll from the ground station, and a flag is set to show

a keyboard message is in progress.

The current received pPoll is decoded and the response is set up

by calling subroutine AVCL. If the poll contains a BCS error,

a "B" is printed (in upper case for acknowledge; else, lower case) .
If there is no BCS error, but there is a non-acknowledge, an "N"

is printed. 1In the case of no unusual occurrance, a "." isg printed.

The response poll is then transmitted. Upon transmission comple-
tion, a "-" jig printed on the secondary terminal, and the ground

station's poll is awaited.

The logic which decodes a poll and formulates the response (AVCL)
first determines whether the poll must be echoed; if so, flag EFT
is set to one, for future reference. The receive area and trans-
mission area indices are set up, and the current received mode is
saved. The five character message identifier received in the cur-
rent poll is saved, using subroutine AMOV. The poll is assumed to

contain an acknowledge, until a true determination occurs.

If a BCS error occurred for the current reception, a branch is
taken to BCSO, to process the error. If no BCS error occurred,
the FAN.flag is cleared so that an acknowledge will be sent
during the response poll. If the current poll is intended for
the printer, it is queued. If it is a time poll, the real-time
software clock is set according to the time contained in the

text of the current poll. The number of non-acknowledges allowed
at the ground station is used to set a BCS error counter. If an
acknowledge is seen in the received poll, the appropriate statis-
tical counter (by either echo or non-echo and text length) is
tallied, the keyboard message flag is cleared and a message com-
pletion record is written on the data acquisition cassette. If
an acknowledge is not seen the logic branches to ACKNOT to proceés
a non-acknowledge. If no BCS error occurred (BCS errors predom-
inate over NAKS), the statistical tables are updated by classifi-
cation length and type and the error is recorded. A NAK-counter
is tallied. If it becomes exhausted, "LINK FAIL" is printed on
the secondary terminal, all keyboard requests are killed and the
counter is re-set full. If the NAK counter is not exhausted, the
alpha character of the received message identifier is stepped and

processing continues at the point of checking for echo.

If a BCS error occurred, flag FAN is set to prompt a NAK in the
réply poll. The correct statistics are updated and the error is
logged on the cassette. If a BCS counter in now exhuasted, "LINK
FAIL" is printed on the secondary terminal and any keyboard requests

are killed. 1In either event processing continues at the echo

-125-

determination.

If an echo is réquired, logic point SUE is entered. 1If not, a
normal mode is entered into the response poll, the preamble is

set up using sub-routine PRE. If a keyboard message went out

last and was not successfully acknowledged, the caller is re-
entered. If a new text keyboard message awaits, the new text

is moved into the reply area, the keyboard label character is

set, and the caller is re-entered. If no keyboard message needs
attention, an "ETX" character is jammed into the reply area and

a flag is checked for a general poll request. If one is necessary,
the proper label character is moved into the preamble area, and

the caller is re-entered.

If an echo is required, the preamble is set-up by calling sub-
routine PRE, the received text is moved to the reply area using
suBroutine AMOV, and ETX is forced after the received BCS charac-
ters, the echo mode is jammed into‘the preamble, the text count

is forced after the "sTX" character, and the caller is re-entered.

-126-

WR

OPRINT

Title message

on auxiliary

terminal.
Allow oper-
ator inserted
messages.
—
e Initialize
MRT message
reception
logic.

((uzp)

NG

Stop timing
and
receiving

] m Kill recei-

er.

Print llwal
on secondary
terminal.

Print "L"
on secondary
terminal.

Message
too short

Print ngn

on secondar
terminal,

Fetch classi
fication of
message,

Decode the
current
message.

Print "b"
on

secondary
terminal.

CPRINT

|

—

Print "B"
on

secondary
terminal.

eral poll
request.

Prompt a gen-

i

Set the

AVCL

BCS
error

NAK

seen

N

CPRINT

flag.

in-progress

(CPRINT l

Print "."
on secondary
terminal.

Print "N"
on

CPRINT

secondary
terminal.

-129-

Transmit
"SEND" buffex

CPRINT

_n
.

Print trans-
mit sentinel

AVCL

Set up
indices to
send/receive
buffers.

l

[Assume non-
echo type;
assume ack-
nowledge.

ave mode and
essage I.D.

nd set echo-
flag if appro

BCS error

?

Force
acknow-
ledge.

Message
or printer

.

Re-set for
full BCS
count of
errors.

ledge seen

Tally acknow-
ledge by
class and

type.

Clear key-
board mes-
sage flag.

Record mes-
sage comple-
tion record.

Re-set for
full NAK
count of
errors.

L

Blank out
alpha char-
acter.

Ecl:o\
required * SUE
2

ECHECK

¢ ASUPR

=13i]=

LCls

(3).

Set mode to
normal text

Set up
preamble .

[Move keyboard
text to SNOMB

Free the key-
board buffer.

"Send" buffer
length to
twelve. Force
"ETX".

E to label
character
one,

eyboard
essage to
go
2

Y

Q to label
character
one.

_ Un-prompt

N general polly ghzgaéigfl
show general one
0ll rgstd. :

132~

Force mode
to echo (H).

PR

-)
)

Set up
preamble.

AMOV

Move received
text to
"send" area.

Set transpar.
text count;
buffer size
count; & ETX.

Current time
to secondary

printer.
Current "re-
ceived" text

to secondary
printer.

Set up full
NAK and BCS
allowbl. from
current text.

Move time
from current
text to
local clock.

I.D. from
save area to
"send" area.

Set aircraft |
I.D. to "sendl

area.

Set label
character
two to "Q". |

Move message]
1
!
|
J

Re-set full

BCS
counter.

BCS@

Force
Update statis-
tics by class
and type.

" NAK " "

sages to go.

Record BCS
error
record.

"Link Fail"

Yto secondary

printer.

Set flag to
show non-
ACK.

Update sta-

tistics by

class and
type.

(0

=135~

Record

NAK
error
record.

"Link Fail"
to
secondary QERINE
printer.’
RFNAKK Kill any Step mes-
possible sage I.D.
ASUPR keyboard alpha (mod-
mes. to go. ules A-Z).

(AMOV)
Force statuJ

to post-
indexing.

J
A
Move a char.
from "get"
to "put"
area

B. ASUPRA

This module is directly analogous to the GSUPRA module in
that it is comprised solely of subroutines or functions which

serve the airborne supervisor (ASUPR) .

Subroutine IAS is directly analogous to the IGS subroutine
of GSUPRA. It is a one-shot subroutine, called at system
start-up, which is used to initialize variables of both
statistical and operational nature. This insures that

statistical information is not biased by previous experiments.

gubroutines SENDM, MRI, and MSGREC are identical to the same

subroutines employed by the ground station and which reside

in module GSUPRA.

=137-

This module is comprised of utility-type subroutines designed
to enable the airborne supervisor to be as logically functional
as possible. This section describes the subroutines of the AU

module in the order in which they occur in memory.

RTCIH

This subroutine is identical to the subroutine of the same name
which resides in module GU, with two exceptions. There is no
timer in the airborne system for the start of a message. There-
fore, flag TSOM and location SOMTR are not pPresent and their
manipulation is not performed. 1In addition, the airborne system
is required to read three factors 6f aircraft attitude. These
three readings -- altitude, pitch, and roll -- are acquired from
analogue-to-digital (A/D) conversions. The method of performing

the A/D conversions is as follows:

Each time the least significant digit of time-of-day millisecond
clock is a three the altitude value is read and stored, and the
converter is requested to convert the analogue pitch value. At
six, the pitch conversion is read and stored, and the converter

is requested to convert the roll value. At nine, the roll conver-
sipon is read and stored, and the request is made to convert the
altitude value, which is read at three. Therefore, all three
attitude factors are completely updated each nine milliseconds,

although at three millisecond intervals.

-138-

BCSIE-BCSN-BCSFE
This subroutine is absolutely identical to the subroutine

of the same name in module GU.

GETAB
This subroutine is absolutely identical to the subroutine

of the same name in module GU.

EREC

This subroutine is called whenever the airborne system super-
visor determines that it is required to file a record on the
data acquisition cassette. The conditions causing an error
record to be filed are shown in Appendix G. 'Good' records

are also filed using this subroutine. Normal (clear text) and
transparent text messages are recorded in separate formats whose

characteristics are shown in Appendices E and F.

EXCOM
This subroutine is identical to the subroutine of the same

name in module GU.
MVCMP

This subroutine is identical to the subroutine of the same

name in module GU.

-139-

GET
This subroutine is identical to the subroutine of the same

name in module GU.

PUT
This subroutine is identical to the subroutine of the same

name in module GU.

ECPUT
This subroutine is identical to the subroutine of the same

name in module GU.

FCLASS
This subroutine is identical to the subroutine of the same

name in module GU.

QuUIT

This subroutine forces all of the on-the-fly statistical infor-
mation to be encoded and scrolled out to the data acquisition
cassette. A system completion message is printed on the primary
terminal, and the supervisor is started up again, at the initia-

lization level.
O0PS02

This subroutine is used to move the nine time-of-day characters

from the real-time clock area to an output buffer area.

-140-

D. ABF-ABD

This module contains all of the flags, tables, variables,
constants, and pointers utilized by the airborne station

supervisor.

The classes of locations are defined by: system constant (K),

experiment constant (C) ., experiment variable (V), puffer (B),

and pointer (P).

=1 4=

FLAG

ACAF

BCSE

EFT

ERMF

FAN

GETABF

KBDM

KBDMIP

KLl

KL2

STATE

-142-

IMPLICATION

A/C I.D. in received poll correct.

A/C I.D. in received poll incor-
rect.

Received poll has no length, I.D.,
nor BCS, error.

Received poll has at least one of
above errors.

Poll must not be echoed.

Poll must be echoed.
End-of-reception character not
seen.

End-of-reception character seen
(or, don't accept modem char.).
Send an 'ACK'.

Send a 'NAK'.

'GETAB' subroutine not busy.
'"GETAB' subroutine busy.
No keyboard buffer needs atten-

tion.
A keyboard buffer needs attention.

No keyboard buffer is in trans-
mission.

A keyboard buffer is in transmis-
sion. '

General poll not in request state.

A general poll is requested.

Keyboard text not in output area.

Keyboard text is in output area.

FLAG

KL3

MLFL

MLFS

NAKE

QF

SOHF

STXF

TC

TCO

STATE

-143-

IMPLICATION

Keyboard message not sent at least
once.

A keyboard message has been sent
at least once.

Not transmitting.

Transmitting.

Received poll not too long.

Received poll too long.

Received poll not too short.

Received poll too short.

'ACK' seen.

'ACK' not seen.

Continue.

Stop.

This received char. is an 'SOH'.

This received char. is not an
'SOH'.

An 'STX' not seen.

An 'STX' has been seen.

Do not time characters.

Time characters.

Character clock did not overflow.

Character clock overflowed.

FLAG STATE IMPLICATION

TSOM : 0
Not used.
1
TSOMO 0
Not useqd.
1

-144-

FLAG STATE IMPLICATION

KL3 0 Keyboard message not sent at least
once.
1 A keyboard message has been sent

at least once.

MD 0 Not transmitting.
1 Transmitting.
MLFL 0 Received poll not too long.
1 Received poll too long.
MLFS 0 Received poll not too short.
1 Received poll too short.
NAKE 0 'ACK' seen.
1 'ACK' not seen.
QF 0 Continue.
i Stop.
SOHF 0 This received char. is an 'SOH'.
1 This received char. is not an
'soH'.
STXF 0 An 'STX' not seen.
1l An 'STX' has been seen.
TC 0 Do not time characters.
1 Time characters.
TCO 0 Character clock did not overflow.
1 Character clock overflowed.

-143-

FLAG STATE IMPLICATION

TSOM i 0
Not used.

1

TSOMO 0
Not used.

1

-144-

LOCATION CLASS USE

ABBEG K Transfer vector.

BCSCNT A4 Interation counter for BCS
calculation.

BCSEEN v Calculated BCS of received
poll.

CB P Points to current keyboard
buffer.

CCNT v Temporary use by MSGREC.

CHART v Character timer clock.

CKBB v See CB.

CLASSC v Classification code.

CRTCC v Current received text char.
count.

CTIME B Time of day part of record
buffer.

ECHOAK V-B Number of acknowledgements of
echo polls.

ECHOBC V-B Number of BCS failures of
echo polls.

ECHOBE Not used.

ECHONK V-B Number of non-acknowledgements
of echo polls.

ECHONR Not used.

ECNT v Temporary use by MSGREC.

ENALT V-B Encoded raw altitude.

-145-

LOCATION CLASS USE

ENPTCH V-B Encoded raw pitch.

ENROLL V=B Encoded raw roll.

ERBUF v Recording buffer.

HEIGHT \' ’ Raw altitude A/D value.

KNPK (o] Number of prekeys, as
directed ground station.

LBCSW v BCS calculation variable.

LSTCC Not used.

MANB K-P Pointer table to MAN1l, MAN2,
MAN3.

MAN1 B . Keyboard buffer.

MAN2 B Keyboard buffer.

MAN3 B ' Keyboard buffer.

MS v 'Current mode of received
poll.

NEAK V-B : Non-echo: See ECHOEC.

NEBC V-B Non-echo: See ECHONK.

NENR Not used.

NUMBER V-B Buffer length count of record
buffer.

~146-

LOCATION CLASS USE

OMSG Not used.

OMSGO V-B M.S. message numeric.
OMSG1 V-B Next message numeric.
OMSG2 V-B Next message numeric.
OMSG3 V-B L.S. message numeric.
OMSG4 V-B Message alpha.

PITCH v Raw pitch A/D value.
RBCSW v BCS calculation variable,
RCVMB B Reception poll buffer.
RIDC V-B Record code.

ROLL v Raw roll A/D value.

SNDMB B Transmission poll buffer.
SOMTR Not used.

TODHRA V-B M.S. hours.

TODHRB V~-B L.S. hours.

TODMNA V-B M.S. minutes.

TODMNB V-B L.S. minutes.

-147-

LOCATION CLASS USE

TODMSA V-B M.S. milliseconds.
TODMSB V-B Middle milliseconds.
TODMSC V-B L.S. milliseconds.
TODSCA V-B M.S. seconds.

TODSCB V-B L.S. seconds.

TT Not used.

-148-

VI. SYSTEM INTERRUPT AND I/O LEVEL

This section describes the I/0 and system interrupt processing.
All of the modules in this logical level are used by all of the
programs in the data link project -- ground station software,
airborne station software, and both data reduction/analysis pro-
grams. The representation SIH is used both to refer to the
module of that designation and to be read as "system interrupt
handler." The meaning to be inferred is to be taken from the

context of use.

-149-

A. SIH OVERVIEW

An interrupt occurs and the 960A vectors to the CRU interrupt
location. There, the software determines which device has
interruptéd, clears the hardware interrupt line and sets a
software interrupt flag. After an internal timer one millisecond
interrupt, however, the clock is reset and is running while inter-
rupts are disabled. It is at this point that the software inter-
rupt flags are interrogated and the various handler routines are
called to service the interrupts which have occurred. This

scheme simulates a real time system clock in which the clock

is running at all times. After all interrupts have been serviced

{in less than one millisecond), interrupts are enabled again.

The most complex portion of the I/0 has been the development
of a scheme to interweave the recording of cassette data, the
printing of operator messages and the echoing of keyboard entered
operator input. This was necessary because of the singie I/0

channel allotted to the 733 recorder/printer unit.

The scheme chosen was that of constructing three circular buffers
to simulate three devices. All data to be recorded is put into
the record buffer (RBUF); all data to be printed is put into the
print buffer (PBUF); all data to be echoed as a result of key-

board input is put into the keyboard buffer (KBUF).

-150-

When data is entered into any one of these buffers the other
two buffers are checked for active I/O status. If neither
buffer is actively engaged in I/O, control passes to the
recently data stored buffer. This buffer then proceeds to
output a character and continues outputting until it is
empty or looses its activity to a higher priority buffer.

If either buffer is actively engaged in I/O, control may

or may not be changed.

A buffer priority for I/O activity has been defined, where
KBUF has the highest priority. That is, if either RBUF or
PBUF is active when KBUF receives data, control will be passed
to KBUF as soon as it is practical to do so. Also, RBUF is
activated by a special character stored in the PBUF. Therefore
PBUF will actively transfer control to RBUF upon the outputting
of a special character. After that RBUF may pass control to
KBUF, but not to PBUF unless RBUF lacks data. When any buffer

runs out of data it will activate any buffer which has data.

-151-

B. BINARY CODED HEX

Wh;le recording or playing back data on the TI-733 cassette
unit there are certain seven bit binary codes which are used
as control characters for the unit. It is therefore imperative
that we do not encounter any of these control characters unex-
pectedly in a data stream. While playing back data which
includes a hexadecimal 13, the playback unit will unexpectedly
halt. While recording data which includes a hexadecimal 13,
the recorder will turn itself off. These control characters
are:
11 (playback on), 12 (recorder on), 13 (playback off),
14 (recorder off), and 10 followed by a 31-3F which

cause RDC functions.

It should be noted that all common printable ASCII characters
{hexadecimal 20-5A), capable of being inputted from the keyboard

or read from a normal text message, will not cause any trouble.

Also any seven bit binary numbers or constants which are not listed
above will not cause any problems. The problem arises when we are
asked to playback or record binary data‘which includes the above
mentioned control characters. Our solution to the problem is to
encode any such variable binary data stream into printable ASCII
characters. This scheme also allows for the visual inspection

of tapes containing a variable binary data stream.

=150

The scheme calls for the encoding of a four bit binary number as
one ASCII character. The ASCII character is determined by
adding a hexadecimal 30 to the value of the four bit number,

To convert the ASCII character back to a four bit binary number,
simply subtract a hexadecimal 30 from the ASCIT value. Therefore
all possible four bit binary values 0-15 map into the printable

ASCII characters.

EXAMPLE : One 16 bit word maps into four ascii characters
Hexadecimal 3 F 1 2

Binary 0011111100010010

ASCIT NO

maps to:

Hexadecimal 3 3 3 F 3 1 3 2
Binary 00110011001111110011000100110010
ASCIT 3 ? 1 2

=153~

C. SIH MODULES (10)

MODULE

1) SIHI

2) SIH

3) SIHA

4) SIHB

SUBROUTINES

BRANO

DSROFF

RINT

WINT

RECEND

GKCHAR

PLAY1

KREAD

REWINE

PLON1
PLON2

RANDIO

-154-

FUNCTION

All internal, DMAC, and CRU
interrupts are vectered here,
flags are set and the interrupts
are cleared. Upon 1 MS clock
interrupts the flags are examined
and the appropriate device serv-
ices routines are called.

Called by routines running in
supervisor mode which wish to
halt in worder mode

To reset the DS receiver

Handles TTY READ interrupts
from playback unit/keyboard

Handles TTY WRITE interrupts
from the record unit/printer

Flushes the record buffer onto
tape

Get the next keyboard character
input

Playback 1 record from the
AUX TTY

Handles input characters from
AUX TTY playback and main TTY
keyboard input

Rewind both units, bring them to
load point

Set playback on cassette unit #1
Set playback on cassette unit #2
Called by data reduction program
to inhibit any calls to non-

existent subroutines, lock out
DS interrupts

MODULE
5) SIHD
6) SIHK
7) SIHO
8) SDRP
9) INS
10) SDRDF

SUBROUTINES

OCRLF

GETST

DELAY3

XRINT

XWINT

psouT

PROM

STARTUP

KWRITE

CPRINT

PRINTC
PRINTN
PRINT
RECORD
PLAY

INITIO

~158~

FUNCTION

Print a CRLF on main TTY

Get the status character for
the cassette unit

Delay 3 seconds

Handle DS READ interrupts
Handle DS WRITE interrupts
Output a buffer through the DS
Print keyboard input echo on
TTY

Start up keyboard printing

Handle AUX TTY WRITE interrupts

Print 1 character on AUX TTY

Print 1 character on TTY
Print N character on TTY
Print 1 buffer on TTY
Record 1 record on tape
Playback 1 record from tape
Initilization subroutine

Flag segment and data base
segment

D. FLAGS INSIH MODULES

1. SYSTEM

INPUT 1 if playback input, 0 if keyboard
input

OQUTPUT 1 if recorder output, 0 if printer
ouktput

PACT 1 if printer buffer has started out-
putting characters

PACTL 1 if printer is actively printing its
buffer

PACT2 1 if printer is actively printing key-
board buffer echoes

LAYON 1 if playback on character has been
put in print buffer

LAYOL 1 if PLAYl is being called to play-

back the AUX TTY cassette unit

2. INTERRUPT

DSRI 1 if DS READ interrupt occurred
DSWI 1 if DS WRITE interrupt occurred
MTYRI 1 if TTY READ interrupt occurred
MTYWI 1 if TTY READ interrupt occurred
OPYRI 1 if AUXTTY READ interrupt occurred
OPYWI 1 if AUXTTY WRITE interrupt occurred

-156~

CONDITIONAL

PLAERR

WAITKY

STATC

RECND

SREC

USER SET

ACOPIN

SCEN

1
1

if there is a playback time out error

if there is a completed keyboard

message waiting to set the KBDM flag
when the KBDMIP flag goes low

1

if the next input character is a

cassette status character

1
1

if recend is calling record

if a tape record on character is

in the print buffer

Set to 1 to allow the keyboard to
accept operator input

Set to 1 to allow the decoding of
BCH input from tape and to delay the
return of play until the tape play-
back is completed

-157-

VARIABLE

SPREKEY
SPREAM

TRANS

TRRH

TRRL

GETBX

KCHARL

DUMMY

LIDLE

PUTL13

FREC

DUMMY 1

DUMMY 2

-158-

1 if XWINT is sending prekey
1 if XWINT is sending preamble

1 if RINT sees first BCS char of
transparent text

1 if RINT is decoding right half of
BCH transparent text

1 if RINT is decoding left half of
BCH transparent text

1 if KREAD sees an ETX/ETB

1 if KREAD sees the first char of a
keyboard buffer

1 if WINT is printing a dummy character

1 if WINT will not print a dummy
character after the next character

1 if WINT has just putout an X'13'
to end a record

1 if WINT has just putout an X'1l4'
to turn off the record unit

1.if KRITE is printing a dummy char-
acter on AUX TTY

1 if PROM is printing a dummy char-
acter on AUX TTY (keyboard echo)

SYSTEM VARIABLES

CHARKY LAST CHAR INPUT FROM MAIN KEYBOARD
CHARST LAST CASSETTE STATUS CHARACTER
RECEIVED
CHARIN LAST CHAR READ FROM MAIN TTY
CHARO LAST CHAR WRITTEN FROM MAIN TTY
KOUT NEXT CHAR TO BE PRINTED AS KEYBOARD
ECHO
KCHIN LAST CHAR READ FROM AUX TTY
CHARO1 LAST CHAR WRITTEN ON AUX TTY
XSTAT LAST DATA SET INTERRUPT STATUS CHANGE
XNEXT NEXT CHAR TO BE WRITTEN ON DS
XCHIN LAST CHAR READ FROM DS
XCHOUT LAST CHAR WRITTEN ON DS
I/0 DATA BASE (CIRCULAR BUFFERS)
BUFFER SIZE # WORDS POINTER | ROUTINE TO ROUTINE TO BUFFER
(DEC) FILL BUFFER | EMPTY BUFFER FUNCTION
PBUF 500 PNWDS PPTR PRINTC WINT PRINT
PRINT BUFFER
PRINTN
RBUF 900 RNWDS RPTR RECORD WINT RECORD
BUFFER
KBUF 232 KNWDS RPTR KREAD WINT KEYBOARD
PROM ECHO
BUFFER
PBUF1 300 PNWDS1 PPTRL OPRINT KWRITE AUX TTY
CPRINT PRINT
NPRINT BUFFER

=159~

FIOWCHART SYMBOLS

SUBROUTINE
ENTRY
POINT

CATL TO SUBROUTINE NAME (: EXPLANATION

OF CALL

BRANCH TO LOCATION NAME (IN SEGMENT SEG)

dﬂ) TRREPATRABLE SYSTEM ERROR, HALT

SUBROUTINE RETURN TO CALIER + X

ACTUAL PROGRAM TABEL NAME MAY BE SEPERATE OR AS
PART OF A FUNCTION BOX

MARKS AN EXTERNALLY DEFINED ENTRY POINT
|
| e |

FUNCTION BOX DEFINES SOME OPERATION

-160-

INTC

STIHI
ALL CRU INTE-
RRUPTS VECTORED

HERE

IN
GO INTO » all
WORKER MODE ORKER MOD (:)

CLEAR DS
TIMER
N
SEN AR
xNEQTCH TURN OFF XMI-
TTER

f MD €— 0
CLEAR STA- ——(:)
TUS

RESET PLAY-
BACK TIMER

CLEAR STA- __{::)
TUS

RESET PLAY-
BACK TIME-

ff -161-

STHI : ‘ ‘;i;7 BRANO
CHANGE MODE RESETS DS

TO WORKER RECEIVER

® ®

TIMEOUT
DELAY

Y INTD
PLAERR€ 1 LT : [
P ALL INTERNAL ALL DMAL INTE-

INTERRUPTS R
RUP
VECTORED HERE HERETs KESORES

O O

RESET INT-

CKBB ¢~ WAITED
KBDM € 1

SET UP BUFFER
PROCESSING

-162-

WINT

SIH ::

{ECORDER
ON

XITRB

ENDED REC- OUTPUT4 0

STARTR

' '
RECON1 XITD
Y -~ PBUF
GET NEXT PACT ¢— 0 EMPTY
CHAR

ANYTHING A ——
IN KBUE [ouT: N
X OUTPUT
CHARACTER NEXSD
CHAR PLAY
Gor ON
86nggg SET UP TO e
END RECORD N
Y . ; € NEXT
CHAR REC
ON
OUTPUT¥1 A

N

—1 | , |
A

DUMMIES
AN T
GENERATE SET UP DU-
CR, LF MMY CHARS N

-~

STATIN _@
STAC<— O

ACCEPT TO STORE
KEYBOARD

INPUT

KEYBOARD
INPUT

NO PRINT

PUT DUMMY e TGNORE

IN KBUF

-~

KEYIN1

PLAYBAC
OFF

XITPIL,
N LAYON¢— O

CHARKY
INPUT CHAR

DECODE BCH OF

TRANSPARENT
TEXT
—<¢
RINTL
STORE CHAR *-{::)
IN BUFFER

-1l64-

STIHA

RECND €1

RECND €— 0

é SET AUX TTY

PLAYBACK ON

-165-

SIHA

%

KOUT ¢— KCHIN
FOR ECHO
PRINT

KEYP

PRINT

“™

~/

WATTKY €—1

CKBB4~BUFF
ADD
KBOM &1

KBY
MSG IN PRO-
GRESS

N

LKHAle“ 0

GETBX¢— 0 SET
BUFFER WORD COUNY

-l66-

SIHB

REWINE

REWIND
BOTH UNITS

Corpr)

DELAY 3
SECONDS

e

GET THE
CASSETTE
STATUS

GO TO LOAD
POINT

DELAY 12
SECONDS

~
GET THE

CASSETTE
STATUS

CORRECT
STATUS

[(rran |

MSG PLAY-
BACK ERROR

—

J—

MSGO

UNIT 2 NOT
READY

PRINT THE
MESSAGE

UNIT 1 NOT
READY

%

NO WRITE
TAB IN

UNIT 1

-167-

I

PLARGO

SIHB

PLONL

PLAYBACK
READY

ks

PLAYBACK
ON CASl

CAs 1
TO LOADPT

PLON2

PLAYBACK
ON UNIT2

DELAY 1SEC

©

SIHD

XNEXT €— X'FF'
LDSYNR ¢ FF
WRCHAR <« FF
CNTRL €— INTEN,
DTK, XMTON

SPREKEY ¢— 1
PKNWDS <— KNPK

GET POINTER TO
INPUT BUFFER AND
SEND IT OVER DS

SIHK

BUFFER
EMPTY

GENERATE
CRLF

SET UP DUMMY
CHAR FOR
DELAY

WINTL

GET NEXT
CHAR

XITP

PACT2 €— 0

~

N

QUTTIT

PRINT THE
CHAR

©

STARK

170=

“N

STHO

GENERATE CRLF

SET UP DUMMY
CHAR FOR DELAY

OUTIT

PRINT CHAR

PACT1€-0

®

WINT]

TAKE 1 CHAR
FROM BUFFER

-171-

PRINT1

STORE DATA IN
BUFFER

AUX
PRINTER
ACTIVE

PRINT A CHAR
PACT1¢—1

INS

ENTER WORKER
MODE
INTERRUPTS
MASKED

|

CLEAR HARDWARE
INT BITS

SET UP
INTERRUPT
TRAP
VECTORS

INITIALIZE
SYSTEM
VARIABLES

START 1MS
CLOCK
TIMER

|

SYNCHR €—FF

-174-

INTERRUPT

ENABLE INTERRU-
PTS THIS MUST BE
DONE TO ENABLE
INTERRUPTS ON
MODEM BOARD

CNTRL €&— INTON

ENTER SUPERVISOR
MODE

baud rate. Therefore, to print at our 1200 baud data transfer
rate, we must send the character to be printed followed by fhree
dummy non-printing characters (X'007F'). This scheme gives us
an effective printing rate of 300 baud, the maximum rate at which

the print unit will function.

-175-

F. T.I. 733 TERMINAL

The TI733 is a silent terminal which contains a dual cassette
drive and a keyboard/printer unit. It is referred to in the
documentation as the TTY. The system calls for two 733 units
in each station. These units are referred to as the TTY (or main

TTY in slot EFO) and the AUX TTY (Auxilliary TTY in slot EF5).

The system has two stations with two terminals in each station.

<One terminal is a 300 baud unit while the other three are 1200

baud units. The baud rate refers to the data transfer rate of

the unit and becomes significant when an excessive amount of cassette
recording is done, Therefore; it is. recommended that the

300 baud TTY be used as the airborne station's AUX TTY as this

unit has minimal I/O transfer and is normally not used in data
reduction. Note that the 300 and 1200 baud terminals have

different cabling.

The terminal has two separate devices (keyboard/printer and play-
back/record) controlled by one I/O channel. Therefore, at any
time there can be input from or output to only one device.

That is, you may accept input'from either the keyboard or the
playback unit; you may output to either the printer or the record

v

unit.

Although cassette functions take place at the 1200 baud rate,
the printer unit is only capable of printing characters at a 300

baud rate.

-176-

CABLE DIAGRAM

Fram TT 960 full duplex synchroncus communication module (TI NO 966755)

to McDonnell Douglas Data Link ground modem (Model MDL 310, MSK)

TI EDGE
CONNECTOR TI RS 232 DB 25P
PIN NO. SIGNAL DESCRIPTION SIGNAL PIN NO
A SGRND PROTECTIVE GROUND AA 14'5'_ —
1
27 XMITE. TRANSMITTED DATA BA 2 I
[N
28 RTSE REQUEST TO SEND(T) | CA 4 | :
[
22 CTSE CLEAR TO SEND (T) cB 5 5
l
1
SIQNAL GROUND AB L
32 SCT TRANSMIT CLOCK DB 15 |
PUSH TO TAIX OR N/A 18 E
TRANSMIT/RECEIVE |
CONTROL b
[
DB25S |
PIN NO| |
I
PROTECTIVE GROUND | AA e sy
I
29 RCDE RECETVED DATA BB 3 :
31 DSRE REQUEST TO SEND(R) cC 4 |l
25 DTRE CLEAR TO SEND(R) o) 5 |
1
SIGNAL GROUND 2B 7—
26 SCR DATA CLOCK (R) DD 17

Furthermore 71 edge connector is jumpered as follows (C-3), (D-4), (E-5),

-7y,

(K—g) r

(4-11) for options la, 2a, 3a, 4a, 5a, 6.

-177-

CABLE DIAGRAM

Fram TI 960 Full Duplex synchranous cammmnication module (TI NO 966755)

to ICC Milgo modeim 24 synchronous data set

I
EDGE OONNECTOR TT RS232 DBM-25P
PIN NO. SIGNAL DESCRIPTION SIGNAL PIN NO
22 CTSE CIEAR TO SENDZINPUT CB 5
LINE FROM MODEM -
25 DTRE DATA TERMINAL READY lap) 20
LINE TO MODEM
26 SCR SERTAL CLOCK RECEI- DD 17
VER LINE FROM MODEM
27 XMITE TRANSMITTED DATA BA 2
LINE TO MODEM
28 RTSE REQUEST TO SEND ca 4
LINE TO MODEM
29 RCVIE RECEIVED DATA LINE BB 3
FROM MODEM
30 DCDE DATA CARRIER DETECT CF 8
LINE FROM MODEM
31 DSRE DATA SET READY LINE cc 6
FROM MODEM
32 SCT SERTAL CLOCK TRANSMIT DB 15
FROM MODEM
A SGRND SYSTEM GROUND A i
i) SIGNAL GROUND 2B 7

Furthermore TI edge connector is jumpered as follows (C-3), (D-4), (E-5),

(H-7), (K-9), (M-11) for options la, 2a, 3a, 4a, 5a, 6.

-178=

TT EDGE CONNECIOR JUMPERS

PINS OPTION
c-3 INTERNAL +15V la
D-4 INTERNAL -15V 2a
E-5 TRANSMIT CLOCK LINE SYNCHRCONIZATION 3a
-7 TRUE SENSE RCVD DATA da
K-9 TRUE SENSE TRANSMITTED DATA 5a
M-11 PARITY DISABLED 6

-179-

T000-Z5£996 IL FINIOW NOTIVOINIWWOD SNONCIHONAS

X000-€0TFTZ IL TEARTHIANCO Q/Y Q/¥
TO0-€TTFTZ IL MAWIL TYAMHINT ¥LT
X000-2%9T96 IL JTINAOW VAHL/ALL XZIdNd TINd ALL
T000-90892Z IL QD DYMIINTG D T

SOIYD EOVRILINT (S

T-ZLE6S6 ON ITEVD IL JAVH IS(W ALL Anvd 00€ (¥

Z-ZLE6S6 ON TIGYD IL IAVH ISOW ALL dnvd 00ZT (€

anvdg 00CT 304 6d-8H
anvd 00€ ¥0d 0TE-8H QEIEAWN. BV SQIVod ALL (C

INCYA HOVA SQUvod Od NO SINANOAWOO TIV (T

HINAOW
(WHLISAS HNMOIIV NI HHUW D\A AL “TINOD YiLWd

-180-

(A 94§ v edd ¢
SNOTILOHNNOO

SHTIID arsi)
sng O/I Y096

VII. DATA REDUCTION AND ANALYSIS

This secticn describes the function and operation of the two
data analysis programs. The first program is commonly referred
to as the Data Reduction program and the second as the Graph pro-
gram. The first provides the capability of printing every record
of the ground and airborne experimental cassettes. In addition,
a matrix of statistical information is provided as a run summary.
The second program provides a time versus event graphical repre-
sentation of significant occurrences during an experimental run.

It also produces a statistical summarization.

-181

Data Reduction (DR) is composed of four assembly modules
(MAIN, FIN, PRINRE and UTIL) that form a stand alone executable
program when linked with the system interrupt handler (SIH)

modules.

DR has two input data streams, each read from a cassette via a
Silent 700 terminal. These data streams are recorded by the
ground station and the air station respectively duriﬁg an
experimental run of the baseline system. Both data streams
contain two types of information: transaction data and
statistical data. The transaction data recorded by the ground
station consists of a message transaction record (MTR; noting
time, unusual conditions, message length, mode, etc.) for every
message sent, and the actual text of any message with an error
condition (BCS check, no response, ﬁAK): For transaction data,
the airborne station records an Uplink' Transaction Record

(UTR; containing aircraft attitude, time, message length, mode,
etc.) for every successfully uplinked message, and an error
record (containing the same information plus the received text)
for every uplinked message received with an error condition.
The last record recorded by each station is statistical information
including, for each of four message length ranges, a count of
occurrences of each of eight conditions (echo message with ACK,
.++..., nNon-echo message with BCS error); ahd, for echo type

messages, a bit error count.

DR has two major tasks. The first is to read through the trans-

action data, correlating information from the air and ground

-182-

recordings, and printing it in a form indicating the sequence

of events that occurred during the test. (How much of the trans-
action data is actually printed is controlled by print options
entered via computer panel data switches.) (See Figure I for
details of merging the air and ground transaction files.) While
it passes through the transaction data, DR also counts the number
of successful/unsuccessful transactions, and accumulates total
transaction time for successful transactions. This task is
handled by assembly modules MAIN (for merging the transaction
files) and PRINRE (for formating and printing the transaction

records), which both use utility routines from the module UTIL.

The second major task of DR is to use the accumulated statis-
tical information for computing average transaction time for
successful transactions, and the percentage of occurrence of
various conditions. This task is handled by module FIN using

utility routines from UTIL. An outline of these computations

follows:
1) Average Transaction Time =
total time for successful transactions
number of successful transactions
2) The ground and air systems count each message

as having exactly one of the following condi-
tions: ACK, NAK, NO RESPONSE, BCS ERROR. Hence

for each message length

-183-

3)

Number of echo msgs = Number of echo ACK
+ No. of echo NAK + No. of echo
no response + No. of echo BCR errors
Then

Echo % ACK = No. of echo ACK
100,

No. of echo msgs.
and similarly for the other echo and non-echo condi-
tions. Notice that echo % ACK + echo % NAK + echo %
no response + echo % BCS ERROR = 100%, and similarly

for the non-echo conditions

On echo type messages, the ground system compares ‘the
original copy with the echoed copy (text and preamble)
and count is kept of the total number of bits echoed,
and the total number echoed incorrectly.

Then

Echo bit error $ = No. bits echoed incorrectly . jg¢

No. bits echoed

-184-~

FIGURE 1
Merge of air and ground transaction files.

Error type transaction records contain the time the error

is recognized, and are recordeﬁ in the order they occurred.
Message transaction records contain the start time and end
time for the transaction, and are recorded by the ground
system after‘any error records pertaining to the transaction.
The air and ground transaction files are merged with respect

to these time fields using the following logic:

-185~-

READ RECORD FROM
ATR TAPE

READ RECORD

PRINT MIR
RECORD

READ RECORD
FROM ATR
TAPE

-186~-

PRINRE
PMTR -

Print Msg Transaction Record from MTR Dseg

< PMTR >

SINIT

initialize

for PMTR

I.D., times,
mode to line

—

convert
msg nbr to
ASCII; move

to line

scenario msg
nbr to line

msg length
%o lige

SFP print
line

-187-

PRINRE
PG

Print grnd err record from GREC Dseg

GO

N initialize

SINIT

/ for PG

time and
code to
line

move msg to
line; no

omplete
preamble =
? field spacing

line

h print
]

-188-

PA

PRINRE

Print air err record or UTR from AREC Dseg

UTR

5 SINIT
.

=

init. for

UTR

init. for

err rec

I.D., mode
time, attitude

to line

time, atti-
tude and
code to line

-189-

N

text length

to line

SFP

print
line

PRINRE

SINIT

Initialize for PMTR, PA, PG

{ SINIT)

N store

panel
switches

skip a line;
set flag off

new
nsg flag
on?

NO ‘

initialize
line buffers

-190-

PRINRE

STPS

Get panel switches, display print options

(sTPs)

store current
panel
switches

display new
print
options

switcheb

-191-

SAIT

move to line in as is, double line format

< SAIT >

YES

PRINRE

print line

clear
buffers

split char.
into 2
bytes

L

11" to upper
* line, char
to lower line

make each
byte ASCII

first byte to
upper, second
byte to lower

ore
char.?

=192~

PRINRE
SCBT

move coded binary to line in single line format

< SCBT >

ine
length »
71?2

print line,
clear buffer

NO ‘

convert coded
byte to ASCII

move char.
to line

=193~

SHM

PRINRE

Format error msg line for printing. Used by PA and PG

YES

CC=R?

H-®

bit synch

SAIT and SOH to
S/ line

set
mode=U? YES transparent
text flag
NO
set appropri-
ate flag for reconstruct
normal trans- mode from
parent text code
SAIT | mode to
/ line

=

-194-

SHM continued

I.D.,
ddress, Ack/
Ln o ak, label to
line

PRINRE

STX to
/ line
N\ ETX/ETB
SAIT to line
BCS chars.
SCBT to line
™ print
SFP line

SHM continued”

PRINRE

norm.

NO

[A text to

trans. SCBT line (s)
text to
line(s)

-196~-

print any
remaining
lines

MAIN
Main Sequence Logic Initialize

A

status=01CO

RANDIO | init. SIH

zero BTOT
table

print setup
msg

GKCHAR wait for CR

-

Read & print

parameter rec
Init. merging
air'&t round

new Msg flag
(SNMF) on

-197-

MAIN
Main Sequence Logic Process transactions

get
normalized
air record

get
normalized print
round
g record PG ground
record

print
air rec

get normal-
ized air
record

NO SM2

-198-

MAIN

Main Sequence Logic Process Transactions (cont.)

print
MTR rec.

set SNMF

on

set SNMF
on

(GAIR

print
air rec.

=
I

get
normalized
air rec.

SMTR

print
PA J air rec.
(2
set SNMF
on
get
GAIR normalized

air record

-199-

FIN

Main Sequence Logic compute final percentages

set pntr
to first
BTOT line

g

print avg.
KATL traps. time
line

L
\\\\\k__ move pntr
i YES next BTOT

line

read gfnd
stat. rec.

™~ re-arrange
FLSFT

statistics

/ rec.

L

set pntr. move pntr. to
to first next grnd
stat. line stat. line

N

compute and
VFPL print stat. |—
line

-202~-

Main Sequence

Logic Compute final percentages

compute and

print bit

error %
line

A

read air sys.
stat. rec.

)

FLSFT

re-arrange
stat.
record

VFPL

print air
echo BCS
err line

-]

print air

VFPL non-echo
BCS err
line
print end
of run
msqg
GKCHAR wait for
CR

=203~

MAIN

FLSFT N

Massage statistics record, create and print

statistics header lines
< FLSFT)

FrEREEN_ NO \
rec comp

?
YES
A
N re-arrange
QCFT stat. rec.

print
stat. head-
ing line

-204-

FIN
QCFT

Rearrange Statistical record and convert it to binary
Accumulate echo/non-echo totals for each msg length

{ QCFT)

rearrange
stat.
rec.

convert each
stat. field
to binary

accum. # of
echo/non-eclo
msgs of each
msg length

-205-

KATL

Compute and print average trans. time/ % successful line

< KATL)

KATL ”
Zalled NO . print
efore column
2 headings

YES |
~N| place avg.
HAT trans. time
) in line
msg length
in line

nbr succ/un-
succ in line

\ % sucec in

LPRCT 1ine

_

print line

=206~

VFPL

Create and print condition occurrence line

need print
column XES column
dgsz hdgs.
NO I
% for msg
LPRCT lengths
0.1

¢ for msg
LPRCT lengths
2-30

)

o
% for msg
LPRCT lengths
31-120

$ for msg
LPRCT lengths
121-999

v

)

L

condition
name in
line

FIN

=207~

print line

CNT

Accumulate statistics from MTR records

CNT

get pointer
to BTOT

based on msg
length

fisg
complete
F's

increment
complete
msg count

accumulate
total trans-
action time

-208-

UTIL

NO

increment
incomplete
msg count

GRAPH is a stand alone program which is designed to be used

in conjunction with the Data Reduction Program. GRAPH accepts

the same input tapes, but generates a graphic display of the system
performance. It accepts one input tape and, therefore, can be run

with a single ASR-733 terminal.
GRAPH was designed to provide:

1) A graphical representation of all significant system events,
associating them with time and other parameters.

2) Two separate graphs for each experiment. Each graph will be
representative of the frame of reference from which it origi=-
nated (ground/air station).

3) General statistics which can be used as a standard by which
all experiments can be compared.

4) Sufficient information so that every message transaction can

. be traced from origination to conclusion.

The graphic output consists of a family of square waves printed in a
vertical direction. The wave length is calibrated in units of time
while the height is either high (In Communications), or low (Out Of
Communications). Since this wave form is representative of a (ground/
air) station's frame of reference, the air and ground graphs will be

of slightly different waves. That is, at some point in time the

ground station will decide that it has a no-response condition and its
graph will go low. At the same point in time, the air station may have
responded to the last ground communication, and its graph will still

be high.

-209-

Thus, a graph will exhibit a square wave form which moves from
high to low (and vice versa) values to indicate its present

state of communications.

The distance of the wave crest (or trough) is a semi-linear func-
tion and is computed as follows. Each wave crest consists of at
least two lines. One line displays the starting message trans-
action number, and the other displays the final message trans-
action number. Each minute of wave duration (the difference

in real time between the starting and final message transactions)
then causes an additional line of '*' to be printed. Therefore,
for any large number of minutes duration, this scaling method
approaches linearity. All significant events which occur during
the experiment are displayed. A significant event is considered

to be one of the following:

1) Any error message transaction (any non-complete

message transaction).

2) The last message completion transaction (MCT)

before the error message.
3) The first MCT after the error message.
4) The first MCT of the experiment.
5) The last MCT of the experiment.

Furthermore, all significant events are associated with a 'Time

-210-

of Day', an ‘'Elapsed Time', and relevant message transaction
information. The Time of Day is the time at which the event

is recognized and recorded by the experimental Data Link System.
Elapsed Time is the difference in time between the Time of Day
being printed and the previously printed Time of Day. Message
transaction information is slightly difference for air and

ground graphs. The ground heading is:

'MSG# MODE SCEN#',

while the air heading is:

'MSG# MODE NAK ATTITUDE'.

The "MSG#' is the four ASCII digits and one alpha character which
are assigned to the message transaction by the ground system

at transmission time. The 'MODE' is the one character mode
associated with each message.

The 'SCEN#' is the number of the scenario text which was imbedded
in the record. (01—16, K=keyboard message).

The air graph has 'NAK' and 'ATTITUDE' columns. The NAK column
contains an 'N', if the message contained a NAK. The attitude
information, represented as three 12 bit words is taken directly
from the aircraft A/D converters at the time when the message

is recorded.

-211~-

Tﬁe troughs of the square wave are indicators of error messages.
The first line of each trough has(associated with it a five
character message transaction number and a one character error
code (B, I, W, L, N). The air graph trough also has a mode
associated with it. . The grouhd graph displays any non-MCT ‘
record as an error, while the air graph allows N errors to be
treated as MCT's, since the receipt of a NAK in a message only

implies something wrong with the previous message transmission.

~212=

GRAPH STATISTICS

There are three time calculations which indicate how station
time was allocated between processing MCT's and error trans-
ﬁissions. The 'DURATION' of the experiment is the elapsed time
from the first MCT until the last MCT. It is a measure of the
time that the station was in the communications loop. Graphic~

ally, it is the elapsed time from the initial wave high until

the final wave low.

'OUT OF COM' is the sum of the elapsed times of all wave troughs.
It is a measure of how much time the station spent in processing

iE
non~producti¥e error messages.

'IN COM' equals DURATION=OUT OF COM. It is the sum of the elapsed
times of all wave crests. It measures how much time the station

spent in processing productive MCT's.

There are four row headings in the remaining statistics. The
headings are self-explanatory. 'ALL MSGS' are divided into
three mutually exclusive groups. '#MC MSGS' represent MCT's.

'#NAK MSGS' represent all other messages (errors).

The three column headings are also self-explanatory. 'TOTAL'
represents the actual number for each row. '$ALL MSGS' and

'MSGS/HOUR' are also calculated for each row.

The ground graph has an additional row. '#GIVE UPS' represents

the number of times that a selected message was not successfully

-213-

transmitted, but was given up on because it incurred more than
the allowable parameter number of error messages. This category

is a subset of the "BAD MSGS" row.

GRAPH is composed of three assembly modules (Grapxx, Mathxx, and
Gradxx) that form a stand alone executable program when linked
with the System Interrupt Handler. Graph is a load and go program

which will automatically self start after loading.

It prints its initial dialogue:
'READY INPUT TAPE AND
TYPE 'RETURN' OR
TYPE 'S' (STATISTICS ONLY)

WHEN READY'.

The operator must bring the input tape to the ready position on
the playback cassette unit of the ASR-733 terminal. He may then
type a carriage return to enable the graphic printout and statis-
tics output. Or, he may type an 'S' to only enable the statistics

output.

If a hardware read error occurs during the program execution,
GRAPH will print, ’

'PLAY ERROR',
and the program will automatically restart. The operator must

then manually turn the playback unit. The operator thén responds

to the dialogue as above.

-214-

It should be noted that such any error condition is a result of
misalignment between the tape cassette and the playback unit
read head. If the misalignment is slight, the tape may be read
correctly during the next attempted read. However, it would -

perhaps be better to switch cassette units.

The program requires a 960A Computer, an Interval Timer Board

(Slot EF1l) and an ASR-733 terminal (Slot EFO0).

-215-

HRS MIN SEC MS

o ATF=ASCII TIME l AA: AA: AA. AAA
FORMAT
<:€f> BTF=BINARY TIME FORMAT
| 3 4 WORDS
A (call+x)=ADDRESS A4 HRS MIN SEC
CALL + X

i
A (RX) = ADDRESS COMBINED IN RESISTER X

CONB
CAD
o CONVERT ATF
at A(R2) to
COMPUTE ATF BTF at A (R2)
DIFFERENCES

HOUR DIGITH

[A (call+z) (" cars)| TO BINARY
(conB)| ATF to

BTF IN BIN

MIN DIGITS
TO BINARY

A(call+3)
ATF to BTF
in BINI

SEC DIGITS
TO BINARY

————

BIN2

MS DIGITS

BIN2 BTF

to ATF
at A(call+4

CONVERT 2
ASCII digits
to BINARY

®

-216-

MATH

DIFF

CONA

subtract BTF

at A(call+3)

from BTF at A
(call+2)

convert BTF at
A (R2) to ATF
at A(R2)

difference
BTIF put at A
(call+4)

®

CBTA

convert one

BINARY word

to 2 ASCII
digits

(cBTA)

BIN hours
to ASCII

CBTA

BIN min
to ASCII

BIN sec
to ASCII

cﬁii_"_)

BIN ms
to ASCIT

®

-217-

add two BTF's
together
Al{call+2) +
A(call+3)

n
|

print the ACC

as 4 ASCII
digits

|

result in BTF
placed at
A (call+4)

®

CRLF

PRINTP

©

generate
CRLF

~-218-

move 5 words

from a(Rl) +1
to A(R2)

©

MOVT

move 9 words
from A(RO)+5
to A(R2)

®

move 12 words
from A(R1l)
to A (R2)

®

GRAP
O

N

N

DATLP
initialize
variables
| GETREC | RECORD
RANDIO
INITIO S
| <
print
initial
dialogue
j UNITMA ¢— 0
= N GRMN1 <-- 2
air tape G
| ('GRINIT)
UNITMA 2
ARMN1 1 |
- initialize
| LCMT
GRINIT —
TIMP print
+ time
1 N > N
!

-219-

PO

GRINIT

PRINT AIR OR

DISABLE
PRINT

GROUND
GETRIC HEADINGS
PRINT FIRST REC-
ORD
PLAY
ER
LENGTH -
RECORD ZLR | N
ENABLE
PRINT
5
N <
R
arsTaTEel | | GRSTATE* 1]
ai\ N
tapj////’
1 PROCESS
GRAPH A A GRAPH T PROCESS
HEEGRD RECORD
N
e
Y

~220-

CALST

ENABLE
PRINT

CONVERT OUT

OF COM TIME
Ccom)96 Sor

IN COM TIME
(CAD i= DURT -

— 1 0oUT COM TIME

L

Calculate %'s
DIV for each
CATEGORY

Calculate MSGs
PHOUR PER HOUR for
each CATEGORY

Convert binary

(BINDEC)numbe;s to
decimal

ASCTT

RINT OUT
STATISTICS
CALCULATED

NDPR

PRINT GROUND
4 OF GIVE UPS

—.]

-221-

GRAPH T

—{"Gorc | INCR |
' — | enmMC

| wErRN |7| cormxel

INCR GNG

: —<

GRERR 0

(__cap) 20t It MSG NO to LCMN
Add 2 to Scen Nd

N
2nd ERR Time to LCMT
in ROW (o e) CALCULATE
BHMS DURATION
L_IN SECONDS]
In l

FIRE « 1 f—

% GRERR & 1
D GRSTA
FIRE &= 1 R MOVE LCMT
TO M2T

<
™

’_T_—\ TIME
r__/ PRINT

o e e
TIME

ERNO2 n_l TIMPG 1 PRINT

MOVE TIME

TO LCMT _ CALCULATE,
MSG NO TO S PRINT STATS

LERN

NO N INCR
ERROR ~1 GNBM

INCR
GNNAR

GRAP @

TIMPG
L PRINT
(] PIME
PRINT
IN g
LCMT
X PRINT
NP%;E__J GIVE UP
‘-——9—_—_

=-223-

TIMP

DIFP=
LCMT-LAST

LAST e= LCMT

COMPUTE
ELAPSED TIME

PRINT 1 */mir

PRINT TIME OF
DAY AND
ELAPSED TIME

"'l Gcoreca |
GRAP
<€> MOVE
MSG NO TO LCMNA

TIME TO LCMTA

GRAPHA

FIRST MSG

O

DECODE ETTITUDE
STORE ASCII
IN ALTDP

LCMTA TO LASTA
LASTA TO M2TA
ALTDP TO LALTDP

MC
RECORD GRERR e 0
GOTMX < O

TIMPGA

PRINT
TIME

—————pRINT
NDPRIN lcourc,
AFIRE =1 Er
ARSTAT «=0 @
] =
|

TIMPA

—— | CALCULATE
CALST PRINT
STATISTICS

2nd
ERROR IN
ROW

N

AFIREQ‘llI i ,

TIMPGA
N

b
4 7

-224-

\/

GRAP
@ < AIRN 1
[mrva3 _q| INCR ANNAK
ERRS IN 4 ERRS
ROW N ROW
. 1
Y
e]
PRINT
! (Crmea) "3000
LAST
ERR WAS
NAK PRINT
N D PRIN) ciupc,
¥ ¢ GOUPB
T
((w ppriy | PRINT
GOUPD,
) D
!
|
1 (crir)
| NOTNB I
]
MOVE
TIME TO LCMTA
MSG# TO LERNA =1
_ ERBB
¢ GRAP
Y Sm—
AST
J
ERR A’ eroN (—(werIN) couep [
NAK =2 A
Y B
LN I Eren I ———
— PRINT —
NERIN GOUPF

Divide A(RI)
by A(R2)

in ATF

Answer is in
Decimal ASCIT

of Form
X, X0

convert BTF
HR, Min, to Binary
Minutes

Print
ND PRIN) Spaces

-228-

Campute no
msgs/hour for
each catagory

O

BINDEC

Convery binary

word to

4 digit decimal
ascii

-

GRAP <::::>
11

ND PRIN
Convert Binary
Take A(call + 2) HRS, MIN, SEC
and call to Binary
SIM Print seconds
routine

Binary seconds
answer put
in nums

-229-

VARIABLES OONTAINED IN GRAD DATA SEGMENT

ASCII, current attitude information

NAME USE air/ground Format, explanation

ICMNA A ASCII, last MC message nunber
ILOMN G

ILCMTA A ATF, last MC time

coTr G

LERNA A ASCII, last error Missage number
LERN G

LASTA A ATF, last time printed

LAST &

LALTDP A ASCII, last attitude information
ALTDR A

MLTA A ATF, first message time

MIT G

OUTCBA A BTF, elapsed error time

OUTCB G

~-230-

FLAGS USED IN GRAPH MODULES

The following flags are used by GRAPHT, the ground tape analyser module,
or GRAPHA, the air tape analyser module.

FLAGS INTERPRETATTON
GOTMX " 1 if GRAPHT has received a give-up record
1 if 2 air error messages received in a row

GRERR 1 if last record was an error
ARERR 1 if last air record was a NAK

UNITMA 1 if air tape being processed

STATO 2 if statistics only print
ATRN 2 if current air error is a NAK

GRMN1 1 if GRAPHT is expecting first message record
ARMN1 1 if GRAPHA is expecting first message record.
GRSTAT 1 if GRAPHT is expecting a statistics record
ARSTAT 1 if GRAPHA is expecting a statistics record

FIRE 1 if GRAPHT must print a trough
AFIRE 1 if GRAPHA must print a trough

231-

APPENDIX A

This appendix presents a visual representation of two typical
error records -- a "normal" one and a "transparent" one. There
are special characters to represent the "non-print" characters

inherent to the preambles and post-ambles,

11130011720=009002B+%%%21018A01AQQ%THE QUICK BROWN

FOX JUMPED OVER THE LAZY DOF¢ B.B,B.B

1727374

Time 11:13:00.117
Altitude* 20=
Pitch* 009
Roll* 00?
Sentinel B
Preamble +%%5%%21018A01A00Q%
Text THE QUICK BROWN FOX
JUMPED OVER THE

LAZY DOF

Postamble ¢B1B2
Calculated BCS B3B4

NOTE: In the preamble

In the postamble-

(20D)

(F)

(BCS error)

- % represents the non-printing SYN char.

- %

- A

* Not present in ground error records.

A-2

SOH "
ACK "
sTX "
ETX/ETB char.

BCS N

2359598017?=> € : 2?9N+*%55%H0198b00%094142432?=) 454 < 4

4¢BlB2B384

Time 23:59:59.801
Altitude 7?= (7FD)
Pitch ¢ (ECA)
Roll 2?9 (FF 9)
Sentinel N (NAK)
Preamble +*555H0198bO0%

Text (Encoded) (9 1424322=2454€44

Postamble ¢BlB

2
Calculated BCS B3B4
Note - - See previous page for preamble and postamble definitions.
Note - - Decoding of the text produces (in binary):
(09) 00001001 Byte - Count
(41) 01000001 ASCII A
(42) 01000010 ASCII B
(43) 01000011 ASCII C
(2?) 11111111 Transparent FF
{=) 11011110 Transparent DE
(45) 01000101 ASCII E
(4) 01001110 ASCIT N
(44) 01000100 ASCIT D

1]

APPENDIX B

This appendix shows a visual representation of a typical airborne
transaction record (UTR). The record has exactly this appearance
under off-line play-back conditions. That is, the entire record

is composed of "printing" characters.
p

14585999712900¢017#9702B21?

Time 14:58:59.997
Altitude 1?9 (1F9)
Pitch 00< (E)
Roll 017

UTR Sentinel ¥
Message I.D. 9702B

Mode 2

Text Count 1? (1F)

APPENDIX C

This appendix gives a visual representation of a typical statistics
record. Each character is the representation of encoding a four-
bit byte. This is exactly the appearance that the record would
have if it were to be off-line played-back and printed. 1In this
type of record (statistics) all recorded characters are in the set

of "printing" characters.

09261298300;900;900;900;900000001000000010003000000

040003000200000000000000000000000005400000000000000

1=10000005)0000150>2000056;8000092=800>;00;=00;=00;8

000000000001000000010000000000060000000000000000

Time

Echo Acknowledge

Echo Non-akcnowledge

Echo Non-response

Echo BCS Error

Echo Total Bit Errors

Echo Total Text Chars.

Class

Class

Class

Class

Class

Class

09:26:12.983

00;9 (BY9)

00;9 (B9)

00;9 (BY)

00;9 (B9)

0000

0001

0000

0001

0003

0000

0004

0003

0002

0000

0000

0000
00000000
00000054 (5E)
0000000
000001=1 (1p1)

0000005> (5C)

Non-Echo

Non-Echo

Non-echo

Non-echo

Acknowledge

Non-acknow-

ledge

Non-response

BCS Error

Class

Class

Class

Class

Class

0000150
000056;8
00009?=8
002 ;
00;=
00;=
00;8
0000
0000
0001
0000
0001
0000
0000
0006
0000
0000
0000

0000

(150¢C)
(56B8)
(9FD8)
(CB)
(BD)
(BD)

(B8)

APPENDIX D

This appendix is a visual representation of a typical ground
message transaction record (MTR). The entire record is composed

of "printing" characters.

C9876A0825386910825394062; 3:

MTR Class
Message I.D.
Start Time
End Time
Text Count
Mode

Scenario Message Number

&

9876A
082538691
082539406
2;

3

(2B)

(A)

APPENDIX E

This appendix describes the three types of ground station data

acquisition cassette records.

GROUND DATA ACQUISITION TAPE

RECORD TYPES: (1) TRANSACTION (MTR); (2) ERROR; (3) STATISTICS

TYPE (1): TRANSACTION (MTR)

MTR CLASS 1 ASCII CHAR. NOTE 10
MESSAGE I.D. 5 ASCII CHARS. NNNNA (FOUR NUMERIC-~-
ONE ALPHA)

START TIME 9 ASCII CHARS. HHMMSSUUU

END TIME 9 ASCII CHARS. HHMMSSUUU

TEXT COUNT 2 ENCODED CHARS. NOTE 2 (COUNT OF
ORIGINATING MSG.)

MODE 1 ASCII CHAR. 1, 2, 3, D, OR H
ORIGINATING MSG.)

SCENARIO MSG. # 1 [ENCODED CHAR. NOTE 11

TYPE (2): ERROR

TIME 9 ASCII CHARS. HHMMSSUUU
SENTINEL 1 ASCII CHAR. NOTE 10
PREAMBLE 12 OR 17 CHARS. NOTE 12
TEXT £ 235 CHARS. NOTE 4
POSTAMBLE 3 CHARS. NOTE 5
CALC. BCS 2 CHARS. NOTE 13
TYPE (3): STATISTICS

SEE AIRBORNE DESCRIPTION (APPENDIX F).

NOTE 1:

The aircraft attitude components are the result of a twelve-bit
analogue-to-digital conversion. The raw twelve-bit values are
recorded by splitting them into three four-bit bytes. Each byte
is added to hexadecimal thirty and recorded most-significant byte
first, then middle significant, and, lastly, least significant.

This method of encoding produces the following character set:

BYTE ENCODES TO CHARACTER
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 :
1011 ;
1100 >
1101 =
1110 <
1111 ?

NOTE 2:
The text count is eight bits encoded as two four-bit bytes

(Note 1).

NOTE 3:

The first five characters are recorded exactly as received UNLESS
any belongs to the set hexadecimal 10, 11, 12, 13, or 14, or if
the eighth bit (most significant) is one. If the MSB is one, the
character is recorded as hexadecimal 7E, which is the diacritical
mark (~). If the character is hexadecimal 10 through 14, it is
recorded as lower case A through E, respectively. The sixth char-
acter is recorded as seen, if it is an acceptable mode; else, a U
is recorded, followed by the encoded representation (Note 2) of the
character seen. The final eleven characters (up to, and including,
the STX) are recorded as seen, unless the special cases of hexa-
decimal 10 through 14 or the most significant bit is one are seen,
in which case the same substitution (as previously discussed) takes

place.

NOTE 4:

If the text is "normal" (mode 2 or mode 3), it is recorded as seen,
with hexadecimal 7E or lower case A through E substitution (Note 3),
if necessary. If the text is "transparent" (modes 1, D, H, or U),

the entire text field is recorded in encoded format (Note 2).

NOTE 5:
The ETX character is recorded as seen, with hexadecimal 7E or lower
case A through E substitution, as required. The received BCS char-

acters are recorded by the encoding process (Note 2).

NOTE 6:
The BCS characters calculated during the reception process are

recorded by the encoding process (Note 2).

NOTE 7:

The statistics record is preceded by an empty record (end-of-file)
as a signal to the data analysis program. The record is made up of
single-precision event counters for occurrences of echo messages of
class 1 (text length of 0 or 1 char.), class 2 (text length of 2-20
chars.), class 3 (text length of 31-120 chars.), and class 4 (text
length in excess of 120 chars.). The subclasses are ACK seen, NAK
(not ACK) seen, non-response, and BCS error detected, for both echo-
type and non-echo-type messages. In addition, there are double-pre-
cision counters for total echo text characters and total echo bitsg—-

in-error (classified as above).

NOTE 8:
The single precision word is encoded as four four-bit bytes. The

scheme parallels that of Note 1.

NOTE 9:
These values are not applicable in the airborne system. All values

are zeroed and then recorded as in Note 8.

E-5

B - - "Pure" BCS error

c - - Completion (successfully).

I-- Bit-Compare error.

L - - Message to0 long.

N - - NAK (not ACK) detected.

R - - No response to poll from ground.

5 - - Message too short.
W - - Aircraft I.D. received improperly.
NOTE 1l1:

Since the number of messages in the canned scenario is sixteen, the
encoding is to record the "true" scenario number less one. That is,
message one is recorded as message zero, message two as message one,

. . ., message sixteen as message fifteen (Note 1l). The data analysis
resolves this technique for proper visual display. The symbol "K"

is used to denote a non-scenario message - - time poll - general poll

- system entry poll - keyboard message.

NOTE 12:

If the error recording is caused by a non-response (R-type), then the
first five characters as described in Note 3, are not applicable. The
message is recorded as sent, where the preamble is twelve characters.

In all other cases, Note 3 applies fully.

NOTE 13:
If the case is a non-response (R-type) these two characters are forced
to zero, prior to recording. In all other cases, Note 6 applies fully.

E-6

APPENDIX F

This appendix describes the three types of airborne data
acquistion cassette records. All notes in this appendix refer

to the notes in Appendix E.

AIRBORNE DATA ACQUISITION TAPE

RECORD TYPES: (1) TRANSACTION (UTR): (2) ERROR: (3) STATISTICS

TYPE (1): TRANSACTION (UTR)

TIME 9 ASCII CHARS. HHMMSSUUU

ALTITUDE 3 ENCODED CHARS. NOTE 1

PITCH 3 ENCODED CHARS. NOTE 1

ROLL 3 ENCODED CHARS. NOTE 1

SENTINEL 1 ASCII CHAR. #

MESSAGE I.D. 5 ASCII CHARS. NNNNA (FOUR NUMERIC--
ONE ALPHA)

MODE 1 ASCII CHAR. 1, 2, 3, D, OR H

TEXT COUNT 2 ENCODED CHARS. NOTE 2

TYPE (2): ERROR

TIME 9 ASCII CHARS. HHMMSSUUU

ALTITUDE 3 ENCODED CHARS. NOTE 1

PITCH 3 ENCODED CHARS. NOTE 1

ROLL 3 ENCODED CHARS. NOTE 1

SENTINEL 1 ASCII CHAR. B (BCS ERROR) OR

N (NAK SEEN)

PREAMBLE 17 CHARS. NOTE 3

TEXT £ 220 CHARS. NOTE 4

POSTAMBLE 3 CHARS. NOTE 5

CALC. BCS 2 CHARS. NOTE 6

TYPE (3):

TIME

ECHO-ACK.

STATISTICS

9
1 4
2 4
3 4
4 4
1 4
2 4
3 4
4 4
1 4
2 4
3 4
4 4
1 4
2 4
2 4
3 4
4 4
1 8
2 8
3 8
4 8
1 8
2 8
3 8
4 8

(NOTE 7)

ASCII

ENCODED

CHARS.

CHARS.

HHMMSSUUU

NOTE 8

NON-ECHO-ACK. 1 4 ENCODED CHARS. NOTE

APPENDIX G

This appendix shows the status terminal codes and data acquisition

cassette "error" record codes.

GLOSSARY OF GROUND STATION STATUS TERMINAI CODES

CHARACTER CASE INDICATION

N/A Message received with acknowledge
and good BCS.

B Upper BCS error received with acknowledge,

B Lower BCS error received without acknow-
ledge.

I Upper Bit-compare error received with
acknowledge.

I Lower Bit-compare error received without
acknowledge.

L Upper Message received too long with
acknowledge.

L Lower Message received too long without
acknowledge.

N Upper Message received without acknowledge,

but good BCS.

R Upper No response received.

S Upper Message received too short with
acknowledge.

S Lower Message received too short without
acknowledge.

W Upper Message received with improper
address with acknowledge.

W Lower Message received with improper

address without acknowledge.

- N/A Message sent.

GLOSSARY OF AIRBORNE STATION STATUS TERMINAL CODES

CHARACTER CASE INDICATION

N/A Message received with acknowledge
and good BCS.

B Upper BCS error received with acknow-
ledge.

B Lower BCS error received without ack-
nowledge.

L Upper Message received too long.

N Upper Message received without acknow-
ledge.

S Upper Message received too short.

W Upper Message received with improper
address.

- N/A Message sent.

GLOSSARY OF GROUND STATION RECORDED ERROR INDICATORS

GLOSSARY OF AIRBORNE

Upper

Upper

Upper

Upper

Upper

Upper

Upper

Message received with BCS error.

Message received with bit-compare
error.

Message received too long.
Message received without acknow-
ledge.

No response received.

Message received too short.

Message received with improper
aircraft address.

STATION RECORDED ERROR INDICATORS

Upper

Upper

Message received with BCS error.

Message received without acknow-
ledge.

APPENDIX H

This appendix describes the scenario cassette tape which
contains the sixteen pre-created messages. Also described

is the method of generation of the scenario cassette tape.

The

SCENARIO TAPE FORMAT

The Data Link system uses a scenario tape as its input.

tape must be constructed according to the following rules:

1)
2)

3)
4)
5)

6)

There must be sixteen scenario message records
Each record must be prefixed with the following eleven
character heading:

M0000 01 (ACK) QQ
Where M is the ASCII mode character 1,2,3, or H.
Each record is terminated by an ETX character.
Modes 2,3 must have only 7-bit ASCII characters as text.
Modes 1,H must have their 8-bit text characters encoded
in binary coded hexadecimal. These modes also must
have a text count character which occurs as the first
text word. This count is equal to the number of text
characters to follow, plus one.

The maximum number of text characters allowable is 220.

1)

8)

SCENARIO TAPE GENERATION

Using EDIT-960, running under PSM, create a source of the
scenario tape. Each character should be packed into a half-
word. The pseudo-operation 'DATA' can be used to easily con-
vert a text string into halfword storage. Each record must
be ended by the two halfword characters '1l37F'. Each record
must start on a full word boundary. All modes 1 or H text
must be encoded.

To aid in editing, '7F' may be used as a null character to
£ill halfword boundaries. This character is always ignored
by the generation program.
Using SALM, assemble the source and generate a binary output
tape.
Lead that binary tape at location 3000. This will destroy
the PSM monitor.
Plug an interval timer board into slot EFl.
Load the program 'USER DIAGNOSTIC' at location 0100.
The program will self-start and will print out: 'USER'.

Set panel switches 0-13 down. Set switch 11 to 1. Then
flip switches 14, 15. The program will print out:

' SCENARIO

BIN AT LOC'

Ready an output tape on the record unit.

9)

10)

11)

12)

13)

14)

Type '3000', carriage return.
The program will now interpret the binary scenario table
which was loaded in step 3. It will then record the scenario
tape for use on the Data Link system.
When the recording is complete, the program will print:
'"USER'. The tape is complete. The following steps will
verify the data which was recorded.
Rewind the tape, bring it to ready, and change the record
unit to the playback unit.
Set switch 8 to 1, and flip switches 14, 15. The program
will print:

'CASSETTE UNIT

HOW MANY RECORDS (HEX)?'
Then type '10' which is hexadecimal for 16. The program
will print:

'"PLAYBACK RECORD (P/R)?'
Then type 'P'. The program will then print:

| '"PRINT (Y/N)?"

Then type 'Y'.
The program will now read the tape and output a listing of
the scenario tape as the Data Link system would interpret it.
All ASCII characters are printed as their ASCII equivalent.
All non-ASCII characters are printed as a 16-bit word of the
form ' (00XX)'.
After each record has been printed (ending with ETX), a
word count is printed and an automatic CRLF is generated.

This text count is printed in hexadecimal and counts the

H-4

15)
16)

17)

the number of words read from each record. This does not
correspond to the number of characters in each record be-
cause of the various halfword and encoding methods employed
in generating the tape.

The program will print 'USER' when it is completed.

At this time ODT may be entered at location '27El’.

The binary scenario table may now be changed if necessary.
Any superfluous entries may be modified by inserting the
'7F' ignore character.

The USER DIAGNOSTIC program may be manually restarted

at location 0100 and another scenario tape generated.

USER DIAGNOSTIC PROGRAM

The USER'S Diagnostic Program is used to generate and dump
scenario tapes. It is built by linking SIH with the following
six assembly modules: UPSEG, USERA, USAUX, USERS, USERD and
CALODT. It is a load and go program loaded at location 0100.

It requires that an internal timer board be plugged into slot

EFl.

EER
CAZEZETTE UMIT

S
LLD ZTELIMS UMLIMITED COOOD: ¢ 00OGRY LY 2 mILET IM HRZE 8HE EnGEE ol oGl
'TEMF &1 DEW POTHT S4 nlIED 27 00n0nls voodH (T 14 =L TIMITER 20,10 ILE AFER
HES COO0Ive wORoAy RUHWAYS 24 L=2FT AMD 24 RLEET o uGaLy o B0R TEFRRTURE RN
SOLEFT AMD 25 EIGHT COon=s

]
2000

DOODARZY cO0nTy CRNDRY LA Sae TLeRRED TO 80000 cCn0S FRAMNC
EMTURACGORD v 00GAY Tl DEFRETURE ZALIMAT TREHZITIOMN COO0L

-F IMTERZECTIONCCGLT COGRORWOODEINE 141FOGLE ITE
WICTOR 25700000 c0nOHY ZAM FRAMCECO MRIMTAIM FLIGHT LEVEL cO0GLy Credss 220
ZELARME 4701 O TEFARTURE CGDOZE)

O CODQEs e 0an=:

O VODDE DD NOnSy COueDy CLnnRE LPY GRGLUME 121.

COOnE
01 c0ODEEECoRDsy cO0G0 COD0RY TR TO RuMaRry 25 LEFT RN
D1 CO00Sx DR CGR0Zy JO000 «n00AX A 24 EVEY RT Vel19 ZFW 127,10 o00aniy c0n

DRETATOGH 145,11 PMAC 22,4 PEGRE LEFoOGCT cLe0092 04 LOWER ROTATIM: EEACON
i OO0y COO00AOME LTGHT OUT. FUEL oG, oot

QOO COQOAYXRFTER 12/ MOTHIHG TO REFDET
OHcoaaDy COUNRMAIFCRAFT COMDITION HOW COO =D

nozs
HOOOoQ 0 SOnne Q00 00dSy ool COnaz

ONaE

10000 01 OO0 RE CO0GHSe COnnty Cong2e

O0GE

HOOOn 01 vo0oss 2R ennngy COQ1E cOonDy conoix WIMD 275 AT 16 ZaUAlk IGENT COonaz

N02E :
L0000 DTTO008Y BE CONNEY CO01E: cORATY Canifs LAY TEFARTURE 125.2 L
O2E

HOOo0

SRAY IDENT FADAR COMTHCT 000D
00Dy CODOAYFDR WMTU OO0 CO0GRY
CLIME TO AMD MAINTAHIM &0000000Ds co00RxTLURE. AT SG00 COOnzs .
naza

10000 010008 AR CO00SD COOVE 000D CO00AY TRAFFTS 11 O.CLOCK =2 MILE: 40000
Q00D CcO00R FEET Z0UTHEARZT EBOUMD ZLOLICr FROCEED DIRECT WTLICODOD
CONOAX TRFEIC 3 O7LE 4 MILEE &000 FT ZEMD S

nnss

HOOoo 01 C000Er 330 e Q002
CEMTERE 125, 0DO00nle CO0n:
AHD MAIXMTAIM FLIGHT cO00L;
EHT LEWEL 20000l cQaor>» ORK CEMTER 122, Fo000Dy CnGi
COMTACT cOooDx CGOnA DESCEMD TO AWD MAIMTSIN FO00 0 o0
004=

10000 Ol CO00Q&a R e00n2y conncy coaols conoR 08K CEMTER 128.2c0000h Cco0oRx Z0LA

ERUAME TDEMT RADRAR

ukl IDEMT RADAF
I DIRECT OAk DIRECT SFOCGOOLY 00
IBEMT FATAE COMTRCT o0l

ALTIMITER =0
; RRPRPREOARCH 132:
WECTOR: FOR IL
HERDIMG 25000070

CONOD
Forby 22

APPENDIX I

This appendix shows the generalized message format and describes
some of the special pre-amble characters. For the description
of the specialized message formats (system entry poll, general
poll, time re-synchronization poll, etc.) the reader is referred

to the system specification.

MESSAGE FORMAT

FUNCTION ASCII CODE HEX CHARACTERS
Prekeyl 00 1-150
Bit Syncl 4 2B 1
Bit Syncl ¥ 2A 1
Character Syncl + 2B 1
Character Syncl + 2B 1
Bit Sync + 2B 1
Bit Sync * 2A 1
Character Sync SYN 16 1
Character Sync SYN 16 1
Start of Heading SOH 01 1
Code See Next Page 1
Message Number Numeric 4
Message Alpha Alpha 2
Address Alphanumeric 2
Technical Acknowledge- ACK/NAK 06/15 1
ment

Label Character One See Next Page 1
Label Character Two See Next Page 1
Start of Text STX 02 1
Text - 235 max.
End of Text ETX or ETB 03/17 1
Block Check Sequence 1
Block Check Sequence 1

1

These are timing, modem, and modem controller characters. All
characters following these are passed to the computer.

I-2

UPLINK MESSAGE LABELS

Label 1 Label 2
O System Entry O System Entry
E MSG for Printer Q Other Messages

T Resynch Real Time Clock

Q Other Messages

DOWNLINK MESSAGE LABELS

Label 1 Label 2
O System Entry 0 System Entry
E MSG for Printer Q Other Messages

R Request for Special General Poll

Q Other Messages

MODE CHARACTER
MODE
1 Transparent Text (echo test)
2 Normal Text
3 Normal Text (echo test)
H Transparent text

D System Entry

Message Labels and Mode Characters

e ——— e e | —

REPORT OF INVENTIONS APPENDIX J

After diligent review of the work performed under this
contract, no new innovation, discovery, improvement, or

invention was made.

	75-21-I pt. 1.pdf
	75-21-I pt.2

